Physics, asked by ItzImran, 9 days ago


Given \: two \: vectors \: \overrightarrow{\mathrm{A}} = 2{\hat{i}+4\hat{j}} + 5k \:  \: and \: \overrightarrow{\mathrm{B}} = {\hat{i}+\hat{j}} + 6k. \: Find \: the \: product \: \overrightarrow{\mathrm{A}}.\overrightarrow{\mathrm{B}} \: and \: \overrightarrow{\mathrm{A}} \times \overrightarrow{\mathrm{B}}. \: what \: is \: the \: angle \: between \: them.


★ Trusted answers required. Pls​

Answers

Answered by Aryan0123
56

Answer:

♦  A . B = 36

♦  A × B = 19î - 7j - 2k

♦  Angle between them is approximately 29°

\\\\

Step-by-step explanation:

Given:

Two vectors:

  • A = 2i + 4j + 5k
  • B = i + j + 6k

\\

To find:

  • A . B
  • A × B
  • Angle between vector A and vector B

\\

Solution:

For finding the dot product (scalar product);

Just multiply the numbers with their corresponding i, j, k.

\\

   A . B

= (2i + 4j + 5k) . (i + j + 6k)

= [2(1)] + [4(1)] + [5(6)]

= 2 + 4 + 30

= 36

\\

Now, for finding the cross product (vector product);

consider

★ A vector to be (aî + bj + ck) and

★ B vector to be (xî + yj + zk)

\\

So,

  • a = 2
  • b = 4
  • c = 5
  • x = 1
  • y = 1
  • z = 6

\\

   A × B

= (bz - cy)î + (cx - az)j + (ay - bx)k

= (24 - 5)î + (5 - 12)j + (2 - 4)k

= 19î - 7j - 2k

\\

For finding the angle between them:

 \sf{cos \theta =  \dfrac{ \overrightarrow{a}. \overrightarrow{b}}{|(a)||(b)|} } \\  \\

\implies \sf{cos \theta =  \dfrac{ 36 }{( \sqrt{ {2}^{2} +  {4}^{2} +  {5}^{2}  } ) \times ( \sqrt{ {1}^{2}  +  {1}^{2} +  {6}^{2}  } ) } } \\  \\

\implies \sf{ \cos \theta =  \dfrac{ 36 }{ \sqrt{45} \times  \sqrt{38}  } } \\  \\

\implies \sf{ \theta = cos^{ - 1} \bigg( \dfrac{ 36 }{ \sqrt{45} \times  \sqrt{38}  }  \bigg) } \\  \\

 \implies \boxed{ \bf{ \theta \approx 29^{ \circ} } }\\  \\

Answered by e251707
2

Answer:

Given

a= 2i+3j+4j

b=3i+4j+5k

The scalar product of these two vectors is-

a.b= |a| |b| cosθ

Where θ is the angle between the two vectors.

(2i+3j+4j)(3i+4j+5k) =

|a| |b| cosθ

Or,

6+12+20 = |a| |b| cosθ

Where,

|a| =sqrt(2^2+3^2+4^2)

|b|= sqrt(3^2+4^2+5^2)

Therefore,

38= sqrt(29).sqrt(50)cosθ

cosθ= 38/sqrt(1450)

cosθ=38/38.07

cosθ= 0.998

θ= 1.54 degree.

The angle between the two vectors will be about 1.54 degree.

Similar questions