Math, asked by kamalhajare543, 1 day ago


 \gray{ \underbrace{ \huge \underline{ \pink{ \sf \: Question:-}}}}


 \sf \: if \: \sf\mathrm{x=\dfrac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}} \:  \: and \:  \: \mathrm{y=\dfrac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}} \\  \\ \\   \sf \: find \: the \: value \: of \: \sf{\dfrac{x^{2}+xy+y^{2}}{x^{2}-xy+y^{2}}}
Solve it
No Spam plz

Answers

Answered by Abhijithajare
7

Answer:

\gray{\underbrace{ \red{\huge\underline{ \sf \: Given :-}}}}

 \\ \sf x = \frac{ \sqrt{5} - \sqrt{3} }{ \sqrt{5} + \sqrt{3} } \:  \:  \: </p><p>  and \:  \:  \sf y = \frac{ \sqrt{5} + \sqrt{3} }{ \sqrt{5} - \sqrt{3} }

To find :

 \sf \: The  \: value \:  of \: \longrightarrow \sf\dfrac{x {}^{2} + xy + y {}^{2} }{x {}^{2} - xy + y {}^{2} } \\

Formula's used:

\sf1) \:  \:  \:  \: (x + y)(x - y) = x {}^{2} - y {}^{2}1)(x+y)(x−y)

 \sf \: 2) \:  \:  \sf(x + y) {}^{2} = x {}^{2} + y {}^{2} + 2xy2)(x+y)

3)  \:  \: \sf(x -y) {}^{2} = x {}^{2} + y {}^{2} - 2xy {3}^{} )(x−y) \\

\gray{\underbrace{  \pink{ \huge\underline{ \sf \: Solution :-}}}}

\sf x = \dfrac{ \sqrt{5} - \sqrt{3} }{ \sqrt{5} + \sqrt{3} } \\

Now rationalise the denominator

\sf x = \frac{ \sqrt{5} - \sqrt{3} }{ \sqrt{5} + \sqrt{3} } \times \frac{ \sqrt{5} - \sqrt{3} }{ \sqrt{5} - \sqrt{3}} \\  \\ \sf\implies \sf x = \frac{( \sqrt{5} - \sqrt{3} ) {}^{2} }{ (\sqrt{5} + \sqrt{3} )( \sqrt{5} - \sqrt{3} ) }

We know that (a+b)(a-b)=a²-b²

\implies \sf x = \frac{( \sqrt{5} - \sqrt{3} ) {}^{2} }{( \sqrt{5}) {}^{2} - ( \sqrt{3} ) {}^{2} } \\

we know that (a-b)²= a ² +b²-2ab

\implies \sf x = \frac{5 + 3 - 2 \sqrt{3} \times \sqrt{5} }{2}\\ \\ \sf\implies \sf x = \frac{8 - 2 \sqrt{15} }{2}\\ \\ \sf \implies \sf x = 4 - \sqrt{15} ...(1)\\ \\ \sf y = \dfrac{ \sqrt{5} + \sqrt{3} }{ \sqrt{5} - \sqrt{3} }

Rationalise the denominator

\implies \sf y = \frac{ \sqrt{5} + \sqrt{3} }{ \sqrt{5} - \sqrt{3} } \times \frac{ \sqrt{5} + \sqrt{3} }{ \sqrt{5} + \sqrt{3} } \\

\sf \implies y = \frac{( \sqrt{5} + \sqrt{3}) {}^{2} }{2}\\ \\ \sf\implies \sf y = \frac{5 + 3 + 2 \sqrt{15} }{2}\\ \\ \sf\implies \sf y = \frac{8 + 2 \sqrt{15} }{2}\\ \\ \sf\implies \sf y = 4 + \sqrt{15} \:  \:  \:  \:  ...(2)

We have to find the value of

 \longrightarrow\sf \dfrac{x {}^{2} + xy + y {}^{2} }{x {}^{2} - xy + y {}^{2} }

First solve Numerator

 \:  \\ \longrightarrow\sf x {}^{2} + xy + y {}^{2}

Put the values of x and y from equation (1) and (2)

 \sf \: = \sf (4 - \sqrt{15}) {}^{2} + (4 - \sqrt{15} )(4 + \sqrt{15} ) + (4 + \sqrt{15} ) {}^{2}

\sf = (16 + 15 - 2 \times 4 \times \sqrt{15} ) + (4 {}^{2} - (\sqrt{15}) {}^{2} ) + (16 + 15 + 2 \times 4 \times \sqrt{15} )

= 31 - \cancel{8 \sqrt{15} } - 1 + 31 + \cancel{8 \sqrt{15} }

\sf = 62 + 1 = 63=62+1=63

Now solve denominator

 \longrightarrow\sf x {}^{2} - xy + y {}^{2}

Put the values of x and y from equation (1) and (2)

\sf = (4 - \sqrt{15}) {}^{2} - (4 {}^{2} - ( \sqrt{15}) {}^{2} ) + (4 + \sqrt{3}) {}^2

\sf = 16 + 15 - 8 \sqrt{15} - (16 - 15) + 16 + 15 + 8 \sqrt{15}

\sf = 31 - \cancel{8 \sqrt{15} } - 1 + 31 + \cancel{8 \sqrt{15}}

\sf = 62 - 1 = 61=62−1=61

Therefore,

 \longrightarrow\sf \dfrac{x {}^{2} + xy + y {}^{2} }{x {}^{2} - xy + y {}^{2} } = \dfrac{63}{61}

Answered by as3801504
54

Answer:

e\red{\boxed{\pink{\mathbb{\overbrace{\underbrace{\fcolorbox{red}{aqua}{\underline{\pink{answer \: in \: attachement : -}}}}}}}}} </p><p> : -

Step-by-step explanation:

Hope it helpful for you

Attachments:
Similar questions