Math, asked by Abhijithajare, 2 days ago


\gray{ \underbrace{ \huge \underline{ \pink{ \sf \: Question:-}}}}




\begin{gathered} \sf \: if \: \sf\mathrm{x=\dfrac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}} \: \: and \: \: \mathrm{y=\dfrac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}} \\ \\ \\ \sf \: find \: the \: value \: of \: \sf{\dfrac{x^{2}+xy+y^{2}}{x^{2}-xy+y^{2}}}\end{gathered}


Solve it
No Spam plz​

Answers

Answered by srivastavadrona
0
This is the first part rest is on the next answer
The app won’t allow to add two pics
Attachments:
Answered by 231001ruchi
1

Answer:

begin{gathered}\sf{\implies \frac{1}{\sqrt n + \sqrt{n+1}} +\frac{1}{\sqrt{n+1} + \sqrt{n+2}} + ...}\\\\\sf{\implies\big( \frac{1}{\sqrt n + \sqrt{n+1}} \times \frac{\sqrt{n}-\sqrt{n+1}}{\sqrt{n} -\sqrt{n+1}}\big)+\big( \frac{1}{\sqrt{n+1} + \sqrt{n+2}}\times\frac{\sqrt{n+1}-\sqrt{n+2}}{\sqrt{n+1}-\sqrt{n+2}}\big) + ...}\\\\\sf{\implies \frac{\sqrt{n}-\sqrt{n+1}}{n-(n-1)}+\frac{\sqrt{n+1}-\sqrt{n+2}}{(n+1)-(n+2)} +... }}\\\\\sf{\implies(\sqrt{n+1}-\sqrt{n})+(\sqrt{n+2}-\sqrt{n+1})... }\end{gathered}

here is your answer please mark me in brainlist and give me many thanks please by auto clicker.

Similar questions