Math, asked by Anonymous, 3 months ago

\green{\boxed{\sf \pink {if \:  \frac{a}{b}  +  \frac{b}{a}  = 1 \:  \:  \:  \:  \:   \: then \: a^3 +b^3=}}}

Answers

Answered by ayush1234222
2

Answer:

Hope it helps you brother.

Attachments:
Answered by SuitableBoy
68

{\large{\bf{\underbrace{\underline{Question:-}}}}}

Q)) If \sf\dfrac{a}{b} +\dfrac{b}{a} = 1 Then, find : a³ + b³

 \\

{\large{\bf{\underbrace{\underline{Answer\checkmark}}}}}

 \\

We have :

  • \sf\dfrac{a}{b}+\dfrac{b}{c}=1

{\textit{\textbf{\underline{Modifying\:it:}}}}

 \colon \implies \sf \:  \frac{a}{b}  +  \frac{b}{a}  = 1 \\  \\  \colon \implies \: \sf  \frac{a \times a + b \times b}{ab}  = 1 \\  \\  \colon \implies \sf \:  \frac{ {a}^{2} +  {b}^{2}  }{ab}  = 1 \\  \\  \colon \implies \boxed{ \tt \blue{  {a}^{2}  +  {b}^{2}  = ab}} \: .... \sf(i)

 \\

{\underline{\textit{\textbf{Finding\:(a+b):}}}}

 \mapsto \sf \:  {(a + b)}^{2}  =   \underline{{a}^{2}  +  {b}^{2}}  + 2ab \\  \\  \sf \: from \: eq(i) \\  \\  \mapsto \sf \:  {(a + b)}^{2}  = ab + 2ab \\  \\  \mapsto \sf \:  {(a + b)}^{2}  = 3ab \\  \\  \longrightarrow \:  \boxed{  \purple{ \frak{(a + b) =  \sqrt{3ab}}}}  \:  \sf  ....(ii)

Now,

{\underline{\textit{\textbf{Finding\:Final\:Answer:}}}}

 \colon \rightarrow \:  \sf  {a}^{3}  +  {b}^{3}  = (a + b)( {a}^{2}  +  {b}^{2}  - ab) \\  \\ \sf \: from \: eq(i) \: and \: eq(ii)   \\  \\ \colon \rightarrow \sf \:  {a}^{3}  +  {b}^{3}  =  \sqrt{3ab} (ab - ab) \\  \\  \colon \rightarrow \sf \:  {a}^{3}  +  {b}^{3}  =  \sqrt{3ab}  \times 0 \\  \\  \star \longrightarrow \:  \underline{ \boxed{ \tt{ \pink{ {a}^{3} } +   \red{{b}^{3}}   = \green{ \bf 0}}}}

So ,

The value of a³ + b³ would be Zero (0) .

 \\

_____________________________

 \\

{\bf{\underline{\underline{Some~Important~Formulas:}}}}

 { \boxed{ \boxed{ \begin{array}{c} \pink{ \tt \bull \:  {(x + y)}^{2}    =  {x}^{2}  +  {y}^{2} + 2xy } \\  \\  \purple{\bull \tt \:  {(x - y)}^{2}  =  {x}^{2}  +  {y}^{2}  - 2xy} \\  \\  \pink{ \bull \:  \tt {(x + y)}^{3}  = {x}^{3}   +  {y}^{3}  + 3xy(x + y)} \\  \\  \purple{ \bull \tt \:  {(x - y)}^{3}  =  {x}^{3}   -  {y}^{3}    - 3xy(x - y)} \\  \\  \pink{ \tt \bull \: {x}^{3}    +  {y}^{3}  = (x + y)( {x}^{2} +  {y}^{2} - xy)     } \\  \\   \purple{\tt \bull \:  {x}^{3}  -  {y}^{3} = (x - y)( {x}^{2} +  {y}^{2}  + xy)  }\end{array}}}}

 \\


ayush1234222: thank bro
SuitableBoy: Thanks Yarr :)
XxyourdarlingxX: Impressive :)❤️
SuitableBoy: Thank Ya' ♡
XxyourdarlingxX: Thanks for thanks ☺️☺️
SuitableBoy: Welcome (:
Similar questions