Math, asked by kamalhajare543, 7 hours ago


\green{\underbrace{\huge\underline{ \red{\sf Question:-}}}}

Solve the following simultaneous Equation
 \\   \sf \: \frac{1}{3x + y}  \:  +  \frac{1}{3x - y}  =  \frac{3}{4} \:  \:  \:  ; \:  \:  \frac{1}{2(3x + y)}  -  \frac{1}{2(3x - y)}  =  \frac{1}{8}

And No spam. ​

Answers

Answered by mathdude500
7

\large\underline{\sf{Solution-}}

Given pair of simultaneous equations

\rm :\longmapsto\:\dfrac{1}{3x + y} \: + \dfrac{1}{3x - y} = \dfrac{3}{4} -  -  - (1)

and

\rm :\longmapsto\:\dfrac{1}{2(3x + y)} - \dfrac{1}{2(3x - y)} = \dfrac{1}{8}

can be rewritten as

\rm :\longmapsto\:\dfrac{1}{3x + y} - \dfrac{1}{3x - y} = \dfrac{1}{4} -  -  - (2)

Let assume that

\rm :\longmapsto\:\dfrac{1}{3x + y} \: =  \: u \:  \: and \:  \:  \dfrac{1}{3x - y} = v

So, equation (1) and (2) can be rewritten as

\rm :\longmapsto\:u + v = \dfrac{3}{4} -  -  - (3)

and

\rm :\longmapsto\:u  -  v = \dfrac{1}{4} -  -  - (4)

On adding equation (3) and (4), we get

\rm :\longmapsto\:2u = \dfrac{3}{4}  + \dfrac{1}{4}

\rm :\longmapsto\:2u = \dfrac{3 + 1}{4}

\rm :\longmapsto\:2u = \dfrac{4}{4}

\rm :\longmapsto\:2u =1

\rm \implies\:u = \dfrac{1}{2} -  -  - (5)

On substituting the value of u in equation (3), we get

\rm :\longmapsto\:\dfrac{1}{2} + v = \dfrac{3}{4}

\rm :\longmapsto\:v = \dfrac{3}{4} - \dfrac{1}{2}

\rm :\longmapsto\:v = \dfrac{3 - 2}{4}

\rm \implies\:v = \dfrac{1}{4} -  -  -  - (6)

Now, from equation (5),

\rm \implies\:u = \dfrac{1}{2}

\rm \implies\:\dfrac{1}{3x + y}  = \dfrac{1}{2}

\rm \implies\:3x + y = 2 -  -  - (7)

Now, from equation (6), we have

\rm \implies\:v = \dfrac{1}{4}

\rm \implies\:\dfrac{1}{3x - y} = \dfrac{1}{4}

\rm \implies\:3x - y = 4 -  -  -  - (8)

On adding equation (7) and (8), we get

\rm :\longmapsto\:6x = 6

\bf\implies \:x = 1

On substituting the value of x in equation (7), we get

\rm :\longmapsto\:3(1) + y = 2

\rm :\longmapsto\:3 + y = 2

\rm :\longmapsto\:y = 2 - 3

\bf\implies \:y =  - 1

Hence, solution of simultaneous equations are

 \red{\begin{gathered}\begin{gathered}\bf\: \rm :\longmapsto\:\begin{cases} &\sf{x = 1} \\ \\  &\sf{y =  - 1} \end{cases}\end{gathered}\end{gathered}}

Answered by as3801504
6

e\red{\boxed{\purple{\mathbb{\overbrace{\underbrace{\fcolorbox{red}{aqua}{\underline{\pink{answer \: in \: atrachement: -}}}}}}}}} </p><p> -

Step-by-step explanation:

Hope it helpful for you

Attachments:
Similar questions