Math, asked by maheshtalpada412, 2 days ago


\green{\underbrace{ \purple{ \underline{ \large\underline{\sf \: \red{Question:-}}}}}}



Find the area of ​​the region covered by the parabola f (x) = 4 - x² and g (x) = x²- 4.
 \\ \rule{300pt}{0.1pt}
 \underline{ \underline{ \large\rm \text{Answer :-}}} \\  \color{darkcyan}\boxed{ \rm  \frac{64}{3} sq.unit}


༒ Bʀᴀɪɴʟʏ Sᴛᴀʀs

༒Mᴏᴅᴇʀᴀᴛᴇʀs

༒Other best user

Answers

Answered by mathdude500
6

\large\underline{\sf{Solution-}}

Given curves are

\rm \: f(x) = 4 -  {x}^{2}  \\ \rm \: and \\ \rm \: g(x) =  {x}^{2}  - 4 \\

So, two curves can be rewritten as

\rm \: y = 4 -  {x}^{2} -  -  - (1)  \\ \rm \: and \\ \rm \: y =  {x}^{2}  - 4 -  -  - (2) \\

Step :- 1 Point of intersection of 2 curves

\rm \: 4 -  {x}^{2} =  {x}^{2} - 4 \\

\rm \: 2{x}^{2} =  8 \\

\rm \: {x}^{2} =  4 \\

\rm\implies \:x \:  =  \:  \pm \: 2 \\

Hᴇɴᴄᴇ,

➢ Pair of point of intersection of the given curves are shown in the below table.

\begin{gathered}\boxed{\begin{array}{c|c} \bf x & \bf y \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf 2 & \sf 0 \\ \\ \sf  - 2 & \sf 0 \end{array}} \\ \end{gathered}

Step :- 2 Curve Sketching

\rm \: y = 4 -  {x}^{2}

can be rewritten as

\rm \: {x}^{2} =  - (y - 4) \\

represents the downward parabola having vertex at (0, 4) and intersects the x - axis at (0, 2) and (0, - 2)

Now,

\rm \: y =  {x}^{2} - 4 \\

can be rewritten as

\rm \:{x}^{2} = y + 4 \\

represents the upper parabola having vertex at (0, - 4) and intersects the x - axis at (0, 2) and (0, - 2)

Step :- 3 Required Area

Now, from graph we concluded that the area of the bounded region is symmetrical in all the four quadrants.

So, required area is given by

\rm \:  =  \: 4 \times \displaystyle\int_{0}^{2}\rm y_{(downward \: parabola)} \: dx \\

\rm \:  =  \: 4 \times \displaystyle\int_{0}^{2}\rm (4 -  {x}^{2})  \: dx \\

\rm \:  =  \: 4\bigg[4x - \dfrac{ {x}^{3} }{3} \bigg]_{0}^{2} \\

\rm \:  =  \: 4\bigg[8 - \dfrac{8}{3} \bigg] \\

\rm \:  =  \: 4\bigg[\dfrac{24 - 8}{3} \bigg] \\

\rm \:  =  \: 4\bigg[\dfrac{16}{3} \bigg] \\

\rm \:  =  \: \dfrac{64}{3}  \: square \: units \\

Hence,

\rm\implies \:\boxed{ \rm{ \:\rm \:Required \: Area  =  \: \dfrac{64}{3}  \: square \: units \:  \: }} \\

\rule{190pt}{2pt}

Additional Information :-

\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \displaystyle \int \rm \:f(x) \: dx\\ \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf kx + c \\ \\ \sf sinx & \sf - \: cosx+ c \\ \\ \sf cosx & \sf \: sinx + c\\ \\ \sf {sec}^{2} x & \sf tanx + c\\ \\ \sf {cosec}^{2}x & \sf - cotx+ c \\ \\ \sf secx \: tanx & \sf secx + c\\ \\ \sf cosecx \: cotx& \sf - \: cosecx + c\\ \\ \sf tanx & \sf logsecx + c\\ \\ \sf \dfrac{1}{x} & \sf logx+ c\\ \\ \sf {e}^{x} & \sf {e}^{x} + c\end{array}} \\ \end{gathered}\end{gathered}

Attachments:
Answered by anushkasengupta786
6

Answer:

Global warming is the long-term heating of Earth's climate system observed since the pre-industrial period (between 1850 and 1900) due to human activities, primarily fossil fuel burning, which increases heat-trapping greenhouse gas levels in Earth's atmosphere.

Dilip! You know what's ur fault. U don't ans. R a ans na when you will be free. Tell it in any of my question no!

Similar questions