Math, asked by maheshtalpada412, 16 days ago


\green{\underbrace{ \purple{ \underline{ \large\underline{\sf \: \red{Question:-}}}}}}


Using integration find the area of region bounded by the triangle whose vertices are (-1,1),(0,5) and (3,2).

\\ \rule{300pt}{0.1pt}

 \\  \huge \red{\boxed{  \text{Answer :-}}} \\     \color{orangered}\boxed{\rm\frac{15}{2} sq.unit}


༒ Bʀᴀɪɴʟʏ Sᴛᴀʀs

༒Mᴏᴅᴇʀᴀᴛᴇʀs

༒Other best user​

Answers

Answered by ӋօօղցӀҽҍօօղցӀҽ
7

 \huge{ \color{lime} \widetilde{ \colorbox{black}{Ansꋪ}}}

 \sf{ \rm{Let  \: we \: have \:  the \:  vertices  \: of  \: △ABC \:  as \:  A(−1,1),B(0,5) and C(3,2).}}</p><p></p><p>

 \sf \rm{ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: Equation \:  of \:  AB \:  is  \: y−1=}</p><p></p><p>

 \sf \rm{ \large( \frac{5 - 1}{0 + 1}  ) \:  \:  \:  \:  \:  \:  \:  \:  \:{ \small \: (x + 1)}}

 \sf{ \rm{ \implies{y−1 \: =4x+4}}}</p><p></p><p>

 \sf{ \rm{ \implies{y=4x+5....(i)}}}

 \sf{ \rm{ And \:  equation  \: of \:  BC  \: is \:  y−5=}}

 \large{( \frac{2 - 5}{3 - 0}) \:  \:  \:  \:  \:  \:  \:  \:  \:  \: { \small{(x - 0)}}}

 \sf \implies{y−5= \frac{ - 3}{3} (x)}

y=5−x....(ii)

 \sf{Similarly,  \: equation  \: of  \: AC  \: is  \: y−1=}

 (\frac{2 - 1}{3 + 1}) \:  \:  \:  \:  \:( x + 1)

 \sf{y−1= \frac{1}{4} (x + 1)}</em></strong></p><p><strong><em>[tex] \sf{y−1= \frac{1}{4} (x + 1)}

 \implies{4y=x+5....(iii)}

 \sf{Area  \: of  \: shaded  \: region =}

 {∫}^{0} _{ - 1}(y_{1} - y _{2})dx +  {∫}^{3} _{0}( y_{1} -  y_{2})dx

 =  {∫}^{0}  _{ - 1} \:  \: [4x + 5 -  \frac{x + 5}{4} ] \: dx +   {∫}^{3} _{0} \:  \:  \: [5 - x -  \frac{ x  + 5}{4} ]dx

 = [ \frac{ {4x}^{2} }{2}  + 5x -  \frac{ {x}^{2} }{8}  -  \frac{5x}{4}  { ]_{ - 1} }^{0}  +

 = [5x -  \frac{ {x}^{2} }{2}   -  \frac{ {x}^{2} }{8}  -  \frac{5x}{4}  {]}^{3}  _{0}

 = [0 - (4. \frac{1}{2}  + 5( - 1) -  \frac{1}{8}  +  \frac{5}{5})] +

 [(15 -  \frac{9}{2}  -  \frac{9}{8}  -  \frac{15}{4})  - 0]

 = 18 + ( \frac{1 - 10 - 36 - 9 - 30}{8} )

 = 18 + ( -  \frac{84}{8} ) = 18 -  \frac{21}{2}  =  \frac{15}{2} sq \: units \:

 \\  \rule{300pt}{0.1pt}

hope its help u

Attachments:
Answered by pdpooja100
1

Let we have the vertices of △ABC as A(−1,1),B(0,5) and C(3,2).

∴ Equation of AB is y−1=(

0+1

5−1

)(x+1)

⇒y−1=4x+4

⇒y=4x+5....(i)

And equation of BC is y−5=(

3−0

2−5

)(x−0)

⇒y−5=

3

−3

(x)

⇒y=5−x....(ii)

Similarly, equation of AC is y−1=(

3+1

2−1

)(x+1)

⇒y−1=

4

1

(x+1)

⇒4y=x+5....(iii)

∴ Area of shaded region =∫

−1

0

(y

1

−y

2

)dx+∫

0

3

(y

1

−y

2

)dx

=∫

−1

0

[4x+5−

4

x+5

]dx+∫

0

3

[5−x−

4

x+5

]dx

=[

2

4x

2

+5x−

8

x

2

4

5x

]

−1

0

+[5x−

2

x

2

8

x

2

4

5x

]

0

3

=[0−(4.

2

1

+5(−1)−

8

1

+

$

5

)]+[(15−

2

9

8

9

4

15

)−0]

=[−2+5+

8

1

4

5

+15−

2

9

8

9

4

15

]

=18+(

8

1−10−36−9−30

)

=18+(−

8

84

)=18−

2

21

= 15/2 square units

Attachments:
Similar questions