Math, asked by ayush579, 1 year ago

\huge{\bf{\blue {\fbox{\underline{\color{red}{Help\:Me:\Guys}}}}}}

\huge{\bf{\green {\fbox{\underline{\color{brown}{Question}}}}}}

If one Root of the quadratic Polynomial
 {2x}^{2}  - 3x + p
is 3, find the other root . Also find the Value of P.​


Anonymous: ___k off

Answers

Answered by Anonymous
0

Hey

2x {}^{2}  - 3x + p = 0 \\  \\ given \: x = 3 \\  \\  =  > 2(3) {}^{2}  - 3 \times 3 + p = 0 \\  \\  =  > 18 - 9 + p = 0 \\  \\  =  > p =  - 9


ayush579: wrong answer
Answered by ishucutee
2

2 {x}^{2}  - 3x + p \:  \\ let \: the \: root \: be \:  \alpha  \: and \:  \beta \:  \\ and \: it \: is \: given \: that \:  \alpha  = 3  \:  \\  \\  \alpha  +  \beta  =  \frac{3}{2}   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: (1)\\  \alpha  \beta  =  \frac{p}{2}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: (2) \\  \\ put \: the \: value \: of \:  \alpha  \: in \: 1 \\ 3 +  \beta  =  \frac{3}{2}  \\  \beta  =  -  \frac{3}{2}  \\ now \: put \: value \: of \:  \beta  \: and \:  \alpha  \: \: in \: 2 \\  \\ 3 \times  \frac{ - 3}{2}  =  \frac{p}{2}  \\ p =  - 9

#Bebrainly

❤️❤️❤️❤️❤️❤️❤️❤️☺️☺️☺️☺️

Similar questions