Math, asked by ayush579, 1 year ago

\huge{\bf{\blue {\fbox{\underline{\color{red}{HELP ME}}}}}}

I HOPE AP ISKA ANSWER DE DO APKA BHOT ESAN HOGA
❤️❤️❤️❤️❤️❤️❤️❤️❤️
Please help me maths Star
️️️️️️️️
<b><marquee>
‌✌️ ✨HELP ME✨ ✌️ 

Attachments:

Answers

Answered by abhi569
66
To \: prove : \bigg(\dfrac{1 + \sin \theta - \cos \theta}{1 + \sin \theta + \cos \theta} \bigg) {}^{2} = \dfrac{1 - \cos \theta}{1 + \cos \theta }



Solving left hand side,

 \implies \bigg( \dfrac{1 + \sin \theta- \cos \theta}{1 + \sin \theta+ \cos \theta} \bigg) {}^{2} \\ \\ \\ \implies \bigg( \dfrac{\sin \theta + 1 - \cos \theta}{ \sin \theta + 1+ \cos \theta} \bigg) {}^{2}



============
From the properties of trigonometry, we know
sin²A = 1 - cos²A
Or, sinA = √{ 1 - cos²A }
Or, sinA = √{ 1 - cosA }{ 1 + cosA }
===========



 \implies \bigg(\dfrac{ \sqrt{ 1 - \cos {}^{2} \theta} + (1- \cos \theta) }{ \sqrt{1 - \cos {}^{2}  \theta } +( 1+ \cos \theta)} \bigg) {}^{2} \\ \\ \\ \implies \bigg(\dfrac{ \sqrt{ 1 - \cos {}^{2} \theta } + \sqrt{ (1- \cos \theta) {}^{2} } }{ \sqrt{1 - \cos {}^{2}  \theta } + \sqrt{ ( 1+ \cos \theta) {}^{2} }} \bigg) {}^{2} \\ \\ \\ \implies \bigg( \dfrac{ \sqrt{ (1 - \cos {}^{}  \theta)(1 + \cos \theta) } + \sqrt{ (1- \cos \theta) {}^{2} } }{ \sqrt{(1 - \cos \theta)(1 + \cos \theta) } + \sqrt{ ( 1+ \cos \theta) {}^{2} }} \bigg) {}^{2} \\ \\ \\ \implies \bigg(\dfrac{\sqrt{1 - \cos \theta} \{ \sqrt{1 + \cos \theta}  + \sqrt{1 - \cos  \theta \}} }{ \sqrt{1 + \cos  \theta }\{ \sqrt{1 - \cos \theta}  + \sqrt{1 + \cos \theta }\}} \bigg) {}^{2} \\ \\ \\ \implies \dfrac{1 - \cos \theta}{1 + \cos \theta}

Hence, proved.

nikitagarg9: great....♥
abhi569: :-)
Anonymous: Awesome answer ✌✌✌
abhi569: :-)
Answered by riyansh5
3
Hope this helpful

save sparrow
Attachments:
Similar questions