Math, asked by ayush579, 1 year ago

\huge{\bf{\blue {\fbox{\underline{\color{red}{HEYl\:ME}}}}}}

\huge{\bf{\green {\fbox{\underline{\color{brown}{Don't Spam}}}}}}


<b><marquee>
‌✌️ ✨Urgently ✨ ✌️ 

Attachments:

umikarao: Rationalize lhs by multiplying both numerator and denominator with 1+sin theta

Answers

Answered by Anonymous
7
 \sf{\underline {Refer\: the\: attached \:picture.}}

 \sf {\large {\underline {TRIGONOMETRIC \:PROVING}}}

 \sf {\large {\underline {FORMULAE }}}

A ).  {sin} ^{2} theta +  {cos} ^{2} theta = 1

B ). 1 -  {sin} ^{2} =  {cos} ^{2}

C ).  \frac{1}{cos\:theta} = sec theta

D ).  \frac{Sin\:theta}{cos\:theta} = Tan theta .

________________________
Attachments:

Anonymous: Thanks.
ayush579: bro thanks to mujhe bolna cahiye tha
ayush579: ☺️☺️
Anonymous: :-)
Answered by BrainlyVirat
11

Answer :

L.H.S =

 \tt {\sqrt{ \frac{1 -  \sin \theta}{1  +  \sin \theta} }}

 \tt{  =  \sqrt{ \frac{1 -  \sin \theta}{ 1 +  \sin \theta}  \times  \frac{ 1 -  \sin \theta}{1 -  \sin \theta}} }

 \tt {=  \sqrt{ \frac{(1 -  \sin \theta) {}^{2} }{1 {}^{2} - \sin {}^{2}  \theta } }}

 \tt{ =  \sqrt{ \frac{(1 -  \sin \theta) {}^{2} }{ \cos {}^{2}  \theta}} }

 \tt {=  \frac{1 -  \sin \theta}{  \cos \theta} }

 \tt { =  \frac{1}{ \cos \theta}  -  \frac{ \sin \theta}{ \cos \theta} }

 \tt {=  \sec \theta -  \tan \theta}

= R.H.S

Hence, Proved.

If any doubt, write in comment box.

Hope it helps! :)

Similar questions