Math, asked by Anonymous, 3 months ago

 \huge \bf{Equation : - }

 : \implies \sf \bigg( \dfrac{60}{16} - x \bigg) - \bigg(\dfrac{60}{16} + x\bigg) = 2

Check the given equation.
Find the value of x and Verify also the answer..

Don't Spam!!​

Answers

Answered by XxMissInnocentxX
15

Solution:-

: \implies \sf \bigg( \dfrac{60}{16} - x \bigg) - \bigg(\dfrac{60}{16} + x\bigg) = 2 \\ \\   \\  :\implies \bigg( \frac{60}{16 - x}  \bigg) -  \bigg( \frac{60}{16 + x }  \bigg) \\  \ \\ \ : \implies60(16 + x) - 60(16 - x)  \\ = 2(16 + x)(16 - x) \\  \\  :\implies60(16 + x - 16 + x)  \\  = 2(16 {}^{2}  -  {x}^{2} ) \\  \\  :\implies \: 30(2x) =  {16}^{2}  -  {x}^{2}  \\  \\ : \implies \: 60x = 256 -  {x}^{2}  \\  \\ : \implies \:  {x}^{2}  + 60x - 256 = 0 \\  \\:  \implies  {x}^{2}  + 64x - 4x - 256 = 0 \\  \\  :\implies \: x(x + 64) - 4(x + 64) = 0 \\  \\  :\implies \: (x + 64)(x - 4) = 0 \\  \\  :\implies \: x = 4 \:,  - 64

Similar questions