Math, asked by Anonymous, 3 months ago

 \huge \bf Heya \: Guys
In a right triangle ABC in which ∠B = 90°, a circle is drawn with AB as diameter intersecting the hypotenuse AC and P. Prove that the tangent to the circle at P bisects BC.
No spam​

Answers

Answered by Anonymous
40

Given:

  • In a right triangle ABC in which ∠B = 90°.
  • a circle is drawn with AB as diameter intersecting the hypotenuse AC at P.

To Prove:

  • that the tangent to the circle at P bisects BC.

Solution:

\sf\underline{According \: To \: The\:Question:}

  \sf\triangle \: abc \: is \: right \: angled \\  \\  \sf \angle \: abc = 90 \degree \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

Now,

PQ is the tangent which intersects BC at Q

PQ and BQ are tangents drawn from external point Q

Therefore, PQ = BQ

_____________________

 : \implies \sf \angle \: pbq = \angle \: bpq

(Angles opposite to equal sidea are equal)

➸As, AB is the diameter of the circle

 : \implies \sf\angle \: apb \: = 90 \degree \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \\   : \implies \sf\angle \: apb  + \angle \: bpc = 180\degree  \red{(linear \: pair)} \\  \\  \\  : \implies \sf \angle \: bpc = 180 - 90 \degree \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\  \\  \\  : \implies \blue\angle \sf \:  \blue{bpc = 90\degree} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

_____________________

Now,

due to angle sum property,

 : \implies \sf \: \angle \: apb + \angle \: bpc + \angle \: pcb = 180\degree

so,

 : \implies \sf\angle \: pcb + \angle \: pbc = 90\degree\:  \:  \:  \:   \:  \:  \:  \:  \:   \:  \:  \:  \:  \: \:  \:  \:  \:  \: \:  \:  \:  \:  \:    \:  \:  \:  \:  \: \:  \:  \:  \:  \:   \:  \:  \:  \:  \:

_____________________

    : \implies \sf\angle \: bpc = 90\degree \:  \:  \:  \:  \:   \:  \:  \:  \:  \:   \:  \:  \:  \:  \:   \:  \:  \:  \:  \:   \:  \:  \:  \:  \:   \:  \:  \:  \:  \:   \:  \:  \:  \:  \:   \:  \:  \:  \:   \\  \\  \\  \sf\therefore \angle \: bpq + cpq = 90\degree  \:   \:  \:  \:  \:   \:  \:  \:  \:  \:   \:  \:  \:  \:  \: \:  \:    \: \:  \:  \:  \:   \:  \:  \:  \:  \:   \:  \:  \:  \:  \: \:

Now, these equations say that,

 : \implies \sf\angle \: pbc + pcb = \angle \: bpq + cpq \\   \\ \\  : \implies \sf\angle \: pcq = cpq\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \\  \\  \\  \therefore \:  { \boxed{\rm{ \: pq = cq}}}

So,

 \sf {\blue {\bold{bc = qc}}}

\blue{ \underline{ \boxed{ \pink{ \mathfrak{hence \: proved \: tangent \: at \:  p \: bisects \: the \: side \: bc}}}}}

Attachments:
Answered by BrainlyKingdom
9

In a right triangle ABC in which ∠B = 90°, a circle is drawn with AB as diameter intersecting the hypotenuse AC and P. Prove that the tangent to the circle at P bisects BC.

\sf{------------@BrainlyKingdom------------}

Let O be the center of the given circle.

  • Suppose the tangent at P meets BC at Q
  • Then join BP

The aim is to show that BQ = QC.

The diagram for the given is as, (Refer to Attachment)

  • ∠ABC is 90 since tangent at any point of the circle is perpendicular to the radius through the point of contact.

In ∆ABC, ∠1 + ∠5 = 90° (Angle sum property) And ∠3 = ∠1

  • So, ∠3 + ∠5 = 90°

Also, ∠APB = 90° (Angle in semi circle)

  • ∠3 + ∠4 = 90°

So, ∠3 + ∠5 = ∠3 + ∠4

⇒ ∠5 = ∠4

⇒ PQ = QC

Also QP = QB (tangents drawn from an internal point to a circle are equal)

So, QC = QB

 

Attachments:
Similar questions