revelent answer will mark brillant and irrevelent will be reported
Answers
Answered by
5
Now,
Hence, the required answer is 49/64.
Answered by
2
Answer:
cot(θ)=87
Now,
\rm \large \frac{(1 - sin \theta)(1 + sin \theta)}{(1 - cos \theta)(1 + cos \theta)} = \frac{ {(1})^{2} - {(sin \theta)}^{2} }{ {(1)}^{2} - {(cos \theta)}^{2} }(1−cosθ)(1+cosθ)(1−sinθ)(1+sinθ)=(1)2−(cosθ)2(1)2−(sinθ)2
\rm \large = \frac{ 1- {(sin \theta)}^{2} }{ 1 - {(cos \theta)}^{2} }=1−(cosθ)21−(sinθ)2
\rm \large = \frac{ ({cos \theta})^{2} }{ {(sin \theta)}^{2} }=(sinθ)2(cosθ)2
\rm \large = {( \frac{cos \theta}{sin \theta} )}^{2}=(sinθcosθ)2
\rm = {(cot \theta)}^{2}=(cotθ)2
= { (\frac{7}{8} })^{2}=(87)2
= \frac{49}{64}=6449
Hence, the required answer is 49/64.
Similar questions