Math, asked by Anonymous, 7 months ago


\huge \bf \it \color{yellow}{if \:  \cot( \theta)  =  \frac{7}{8} }
 \small \bf \it \color{red}{ \underline{ \underline{then \: evaute \: the \: following}}}

\huge \bf \it \color{yellow}{   \frac{(1 - \sin \theta)(1 +  \sin\theta)}{(1 -  \cos\theta)(1 +  \cos\theta) }}
<marquee bgcolor="aqua">revelent answer will mark brillant and irrevelent will be reported​

Answers

Answered by Anonymous
5

 \rm \large  \cot(  \theta)  =  \frac{7}{8}

Now,

\rm \large   \frac{(1 - sin \theta)(1 + sin \theta)}{(1 - cos \theta)(1 + cos \theta)}  =   \frac{ {(1})^{2} -  {(sin \theta)}^{2}  }{ {(1)}^{2} -  {(cos \theta)}^{2}  }

\rm \large   =   \frac{ 1-  {(sin \theta)}^{2}  }{ 1 -  {(cos \theta)}^{2}  }

\rm \large   =   \frac{ ({cos \theta})^{2} }{  {(sin \theta)}^{2}  }

\rm \large  =   {( \frac{cos \theta}{sin \theta} )}^{2}

\rm   =  {(cot \theta)}^{2}

 =  { (\frac{7}{8} })^{2}

 =  \frac{49}{64}

Hence, the required answer is 49/64.

Answered by Anonymous
2

Answer:

cot(θ)=87

Now,

\rm \large \frac{(1 - sin \theta)(1 + sin \theta)}{(1 - cos \theta)(1 + cos \theta)} = \frac{ {(1})^{2} - {(sin \theta)}^{2} }{ {(1)}^{2} - {(cos \theta)}^{2} }(1−cosθ)(1+cosθ)(1−sinθ)(1+sinθ)=(1)2−(cosθ)2(1)2−(sinθ)2

\rm \large = \frac{ 1- {(sin \theta)}^{2} }{ 1 - {(cos \theta)}^{2} }=1−(cosθ)21−(sinθ)2

\rm \large = \frac{ ({cos \theta})^{2} }{ {(sin \theta)}^{2} }=(sinθ)2(cosθ)2

\rm \large = {( \frac{cos \theta}{sin \theta} )}^{2}=(sinθcosθ)2

\rm = {(cot \theta)}^{2}=(cotθ)2

= { (\frac{7}{8} })^{2}=(87)2

= \frac{49}{64}=6449

Hence, the required answer is 49/64.

Similar questions