Math, asked by ItzDinu, 3 months ago

\Huge\bf\maltese{\underline{\green{Answer°᭄}}}\maltese
 \frac{ \cos \: \alpha }{1 + sin \: \alpha } + \frac{1 + sin \: \alpha }{ \cos \: \alpha } = 2sec \alpha

Please Answer Correctly. ​

Answers

Answered by TheUntrustworthy
40

Given Question of Trignometry:

 \frac{ \cos \: \alpha }{1 + sin \: \alpha } + \frac{1 + sin \: \alpha }{ \cos \: \alpha } = 2sec \alpha

Solution:

 \frac{ \cos \: \alpha }{1 + sin \: \alpha } + \frac{1 + sin \: \alpha }{ \cos \: \alpha } = 2sec \alpha

\frac{ \cos \: \alpha }{1 + sin \: \alpha } + \frac{1 + sin \: \alpha }{ \cos \: \alpha } = 2sec \alpha \\  \frac{ {cos}^{2} \alpha  + 1  +  {sin}^{2}  \alpha + 2 \: sin \:  \alpha  }{cos \:  \alpha  \: (1 + sin \:  \alpha )}  \\  \frac{2 + 2 \: sin  \alpha  \: }{cos \:  \alpha \: (1 + sin \:  \alpha ) }  \\   \frac{2 \: (1 +  \: sin \:  \alpha )}{cos \:  \alpha (1 +  \: sin \:  \alpha )} \\  \frac{2}{cos \: \alpha }  \\  \\ 2 \: sec \:  \alpha  \\  \\ as \: we \: know \: that \:  \frac{1}{cos \:  \alpha }  = sec \:  \alpha  \\ and \: therefore \:  \frac{2}{cos \:  \alpha }  = 2sec \:  \alpha  \\  \\ LHS = RHS \\ Hence Proved


Ekaro: Awesome! ♡
Answered by Ekaro
49

\dag\:\underline{\boxed{\bf{\orange{\dfrac{cos\alpha}{1+sin\alpha}+\dfrac{1+sin\alpha}{cos\alpha}}=\gray{2sec\alpha}}}}

LHS :

\sf:\implies\:\dfrac{cos\alpha}{1+sin\alpha}+\dfrac{1+sin\alpha}{cos\alpha}

By cross multiplying,

\sf:\implies\:\dfrac{[cos\alpha(cos\alpha)]+[(1+sin\alpha)(1+sin\alpha)]}{(1+sin\alpha)cos\alpha}

\sf:\implies\:\dfrac{cos^2\alpha+(1+sin\alpha)^2}{(1+sin\alpha)cos\alpha}

We know that, (A + B)² = + 2AB +

\sf:\implies\:\dfrac{cos^2\alpha+1+2\sin\alpha+sin^2\alpha}{(1+sin\alpha)cos\alpha}

  • sin²α + cos²α = 1

\sf:\implies\:\dfrac{2+2sin\alpha}{(1+sin\alpha)cos\alpha}

\sf:\implies\:\dfrac{2(1+sin\alpha)}{(1+sin\alpha)cos\alpha}

\sf:\implies\:\dfrac{2}{cos\alpha}

We know that, 1 / cos α = sec α

\bf:\implies\:2sec\alpha=RHS

Hence proved!!

Similar questions