Math, asked by Anonymous, 3 months ago


 \huge \bf \: Question
In a Quadrilateral ABCD, CO and DO are bisector of  \sf \angle C and  \sf \angle D
Proof :-
 \bf \angle \:  COD \:  =  \dfrac{1}{2}( \angle \: A   + \angle \: B )
Kindly Do not spam or copy from web.

Answers

Answered by RockingStarPratheek
372

In Triangle COD

➤ By the Angle Sum Property (Angle sum property of triangle states that Interior angles of a Triangles sums up to 180°),

\to\sf{\angle 1\:+\:\angle 2\:+\:\angle COD\:=\:180^\circ}

\to\sf{\angle 1\:+\:\angle COD\:=\:180^\circ\:-\:\angle 2}

\to\sf{\angle COD\:=\:180^\circ\:-\:\angle 1\:-\:\angle 2}

Which can be written as

\to\sf{\angle COD\:=\:180^\circ\:-\:(\angle 1\:+\:\angle 2)}

\to\sf{\angle COD\:=\:180^\circ\:-\:\left(\dfrac{1}{2}\angle C\:+\:\dfrac{1}{2}\angle D\right)}

Taking 1/2 common

\to\sf{\angle COD=180^{\circ}-\dfrac{1}{2}\left(\angle C+\angle D\right)\:\:\:\bf{.......1}}

➤ We know A quadrilateral also has four interior angles and their sum equals 360° which is also known as Angle sum property of a quadrilateral

\to\sf{\angle A+\angle B+\angle C+\angle D=360^{\circ}}

\to\sf{\angle B+\angle C+\angle D=360^{\circ}-\angle A}

\to\sf{\angle C+\angle D=360^{\circ}-\angle A-\angle B}

Which can be written as

\to\sf{\angle C+\angle D=360^{\circ}-(\angle A+\angle B)}

➤ Here We Got the value of \sf{\angle C\:+\:\angle D} and now keep/substitute this value in Equation 1

\to\sf{\angle COD=180^{\circ}-\dfrac{1}{2}\left(\angle C+\angle D\right)}

\to\sf{\angle COD=180^{\circ}-\dfrac{1}{2}[360^{\circ}-(\angle A+\angle B)]}

\to\sf{\angle COD=180^{\circ \:}-\dfrac{1}{2}\left(360^{\circ \:}-\angle A-\angle B\right)}

\to\sf{\displaystyle \angle COD=180^\circ-\left(\left(-\frac{1}{2}\right)\times \:360^{\circ \:}+\left(-\frac{1}{2}\right)\left(-\angle A\right)+\left(-\frac{1}{2}\right)\left(-\angle B\right)\right)}

\to\sf{\displaystyle \angle COD=180^\circ-\left(360^{\circ \:}\times\frac{1}{2}+\frac{1}{2}\angle A+\frac{1}{2}\angle B\right)}

\to\sf{\displaystyle \angle COD=180^{\circ \:}-180^{\circ \:}+\frac{\angle A}{2}+\frac{\angle B}{2}}

\boxed{\boxed{\to\sf{\angle C O D=\dfrac{1}{2}(\angle A+\angle B)}}}

Hence Proved !!

Attachments:

VishalSharma01: Great :)
RockingStarPratheek: Thankyou All !
thapaavinitika6765: Greattt Answer !! :)
RockingStarPratheek: Thankyou
RockingStarPratheek: and Thanks for Brainliest :D
Anonymous: Welcome xD
Anonymous: Thanks for best answer
RockingStarPratheek: Welcome :)
Anonymous: No words for your answer.. Really great
RockingStarPratheek: Thankyou Sista <3
Answered by rajsharma4645
6

Answer:

angle COD=1/2(angle A+angle B)

Step-by-step explanation:

angle1 + angle2 = 180

=angle 2 +angleCOD = 180 -angle 2

=angleCOD = 180 -angle2-angle 1

=180 ( angle 1 -angle 2)

= 180 ( 1/2 angle A+1/2angleB)

=angleCOD=1/2(angle A +angle B)

Attachments:
Similar questions