Math, asked by T0M, 1 year ago


 \huge \bf{Question}
  \sf \: A \:  boy \:  is  \: cycling \:  such \:  that \:   \\  \sf \: the \:  wheels \:  of  \: the \:  cycle \:  are \:  making \:  140  \\  \sf  revolution  \: per \: minute.  \: If  \: the \:  diameter \:   \\  \sf \: of  \: the  \: wheel \:  is \:  60  \: cm,  \: calculate  \: the \:   \\  \sf \: speed \:  per  \: hour \:  at  \: which  \: the \:  boy  \: is \\  \sf \: cycling.

Answers

Answered by Anonymous
152

 \huge\tt{\red{\underline{\underline{\star \: Solution \:  \red{\star}}}}}

 \sf Diameter  \tt\red{(d)} \sf \: of \: the \: wheel \:  = 60 \: cm

 \therefore \sf \: Radius  \: \tt \red{(r)} \sf \: of \: the \: wheel

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf =  \red{ \frac{d}{2}} =  \sf \frac{60}{2} = 30 \: cm \\

 \therefore \sf \: Circumference \: of \: the \: wheel

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \sf \red{2\pi r }= 2\pi (30)

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf = 60\pi \: cm

 \purple{\implies} \sf Distance \: covered \: by \: the \: wheel \: in \\  \sf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  one \: complete \: revolution.

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf = 60\pi \: cm

 \therefore \sf \: Distance \: covered \: by \: the \: wheel \: in \:  \bf \red{140} \\  \:  \:  \:  \:  \:  \:  \:  \:  \sf \: revolutions

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \sf = 60\pi \times 140 \: cm

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf = 60 \times  \frac{22}{7} \times 140 \: cm \\

\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf = 60 \times 22 \times 2 =  \bf \red{26400 \: cm}

 \sf \: i.e., \:  \:  \:  \   \:  \:  \:  \: Distance \: covered \: by \: the \: wheel \: in \\  \sf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  1 \: minute

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf \red{ = 26400 \: cm}

 \therefore \sf \: Speed \: per \: hour \:

 \sf =  \:  \: Distance \: covered \: by \: the \: wheel \: in \:  \\  \sf \:  \:  \:  \:  \:  \:  \:  \: 1 \: hour

 \:  \:  \:  \:  \:   \:  \:  \:  \sf = \:  26400 \times 60 \: cm = 1584000 \: cm

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf = 15840 \: m = 15.84 \: km

 \sf \: Hence, \: the \: speed \: at\: which \: the \: boy \: is  \\ \sf \:  \:  cycling \: is \:  \tt \red{15.84 \: km/hr.}

Answered by Anonymous
298

\huge\textrm{\underline{\underline \red{Answer:}}}

ʜ s ғ ʙʏ ɪs 15840/ɪɴ. ʀ 15.84/ʜʀ.

\huge\textrm{\underline {\underline \red{ExplanaTion :}}}

ʟ's ᴜɴᴅᴇʀsᴛᴀɴᴅ ᴛʜᴇ ʙᴀsɪᴄ ɴ :-

ᴡᴇ ʜᴀᴠᴇ ᴛᴏ ғɪɴᴅ s ʀ ʜʀ ᴀɴᴅ ᴡᴇ ᴀʀᴇ ɢɪᴠᴇɴ ɪʀ,sᴏ ᴡᴇ ғɪʀsᴛ ғɪɴᴅ ᴛʜᴇ ʀᴀᴅɪᴜs ᴀɴᴅ ᴛʜᴇɴ ᴄɪʀᴄᴜᴍғᴇʀᴇɴᴄᴇ.

ʜᴇʀᴇ, ɪʀғʀɴ = ɪsɴ ʀ

ɴ,ʟᴇᴛ's ʙᴇɢɪɴ

\huge\textrm{\underline{\underline \red{Solution:}}}

ɪʀ() ғ ʜʟ = 60

ʀɪs ғ ᴡʜᴇᴇʟ = 30

\footnotesize\sf{ \: \: \: \: \: \: \: \: \: \: (Radius \: = \: \pink{\frac{Diameter}{2} } )}

ɴ;

ᴄɪʀᴄᴜᴍғᴇʀᴇɴᴄᴇ = 2πʀ

\normalsize\sf{\: 2 \times\ \pi \times\ 30}

\normalsize\sf{  \: 60 \pi}

\normalsize\sf{ Distance \: covered \: = \: 60 \pi}

\normalsize\sf \green{Distance \: in \: one \: revolution \: = \: 60\pi}

 \rule{300}{2}

ɪsɴ ʀ ɪɴ 140 ʀʟɪɴs;

\normalsize\sf{ 140 \times\ 60 \pi}

\footnotesize\sf{\: \: \: \: \: \: \: \: (Value  \: of \: \pi \: = \:\pink{\frac{22}{7} }) }

\normalsize\sf{ 140 \times\ 60 \times\ \frac{22}{7} }

\normalsize\sf{ 20 \times\ 60 \times\ 22}

\normalsize\sf{ 26400 cm}

\normalsize\sf\green{Distance(140 \: revolutions)\: = \: 26400cm}

 \rule{300}{2}

ɴ,s ʀ ʜʀ ;

sᴘᴇᴇᴅ ʀ ʜʀ ᴍᴇᴀɴs ᴛʜᴇ ᴅɪsᴛᴀɴᴄᴇ ᴄᴏᴠᴇʀᴇᴅ ɪɴ ᴏɴᴇ ʜᴏᴜʀ,ᴀɴᴅ ᴡᴇ ʜᴀᴠᴇ ᴅɪsᴛᴀɴᴄᴇ ᴄᴏᴠᴇʀᴇᴅ ɪɴ ᴏɴᴇ ᴍɪɴᴜᴛᴇ (26400)

s;

\normalsize\sf{ 26400 \times\ 60}

\normalsize\sf{ 1584000cm}

\normalsize\sf \green{Speed \: per \: hour \: = \: 15.84km/hr}

 \rule{300}{2}

Similar questions