Math, asked by ThankingBot, 11 days ago

\huge\bf {Todays\: Question:- }

Topic :- Quadratic fun !

A root of the equation \bf \dfrac{a+c}{x+a} +\dfrac{b+c}{x+b } = \dfrac{2(a+b+c)}{x+a+b}

Options :-
a) a
b) b
c) c
d) a, b, c

spams will be reported!!!​

Answers

Answered by Anonymous
3

\implies\bf \dfrac{a+c}{x+a} +\dfrac{b+c}{x+b } = \dfrac{2(a+b+c)}{x+a+b}

{\small{\sf{=>(x+b)(a+c)+(x+a)(b+c)}}}\small\sf{=\dfrac{2(a + b + c)(x + a)(x + b)}{(x + a + b)}}

\small\sf{=>{x}^{2} (a+b+2c)+x\{2ab+(a+b)\}c= {2x}^{2} (a+b+c)}\small\sf{+2(a+b)x(a+b+c)2x ^{2} (a+b)+}\small\sf{2x\{(a−b)(a+b+c)\}+(a+b−c)(a+b)=0}

\therefore\boxed{\bf{c) \:c\: is\: the\: right \:option}}

Similar questions