Math, asked by aviralkachhal007, 8 months ago

\huge{\bf{\underbrace{\orange{Question}}}}
solve for x -
 \sqrt{2x + 7}  = x + 2

Answers

Answered by Cynefin
48

Working out:

A equation is given in the question having the variable of x in both sides. We have to solve for x?

GiveN :

  •  \sf{ \sqrt{2x + 7}  = x + 2}

So, let's start solving the above:

 \sf{ \longrightarrow{ \sqrt{2x + 7}  = x + 2}}

Squaring both sides,

\sf{ \longrightarrow{( \sqrt{2x + 7}) {}^{2}  = (x + 2) {}^{2} }}

By using the identity of (a + b)² = a² + 2ab + b² in RHS,

\sf{ \longrightarrow{2x + 7 =  {x}^{2}  + 4x + 4}}

Now shifting all the terms to the LHS,

\sf{ \longrightarrow{2x + 7 -  {x}^{2}  - 4x - 4 = 0}}

\sf{ \longrightarrow{ -  {x}^{2}  - 2x +  3= 0}}

Multiplying with a negative sign both sides,

\sf{ \longrightarrow{ {x}^{2}  + 2x - 3 = 0}}

Factorising by using middle term factorisation,

\sf{ \longrightarrow{ {x}^{2}  + 3x - x - 3 = 0}}

\sf{ \longrightarrow{x(x + 3) - 1(x + 3) = 0}}

\sf{ \longrightarrow{(x  -  1)(x  +  3) = 0}}

So, x can be 1 or -3

Both the values are possible since they are satisfying the above equation. Hence, the answer is:

 \huge{ \boxed{ \sf{ \red{x = 1 \: or \:  - 3}}}}

And we are done !!


amitkumar44481: Awesome :-)
Cynefin: Thank uh !
Answered by DARLO20
80

\sf{\blue{\underline{\underline{\pink{GIVEN:-}}}}}

  • \bf{\sqrt{2x + 7} = x + 2}

\sf{\blue{\underline{\underline{\pink{TO\: FIND:-}}}}}

  • The value of x .

\sf{\blue{\underline{\underline{\pink{SOLUTION:-}}}}}

\green\checkmark\:\bf{\sqrt{2x + 7} = x + 2}

\rm{\implies\:2x\:+\:7\:=\:(x\:+\:2)^2}

\rm{\implies\:2x\:+\:7\:=\:x^2\:+\:2\times{x}\times{2}\:+\:2^2\:}

\rm{\implies\:x^2\:+\:4x\:+\:4\:=\:2x\:+\:7\:}

\rm{\implies\:x^2\:+\:4x\:-\:2x\:+\:4\:-\:7\:=\:0\:}

\rm\red{\implies\:x^2\:+\:2x\:-\:3\:=\:0\:}

\rm{\implies\:x^2\:+\:3x\:-\:x\:-\:3\:=\:0\:}

\rm{\implies\:x\:(x\:+\:3)\:-1\:(x\:+\:3)\:=\:0}

\rm{\implies\:(x\:+\:3)\:(x\:-\:1)\:=\:0}

\rm{\implies\:x\:+\:3\:=\:0\:\:\:\:or\:\:\implies\:x\:-\:1\:=\:0\:}

\rm\pink{\implies\:x\:=\:-3\:\:\:\:or\:\:\implies\:x\:=\:1\:}

\red\therefore\:\bf{\gray{\underline{\red{\boxed{\green{The\:values\:of\:x\:are\:-3\:and\:1\:}}}}}}

Similar questions