Math, asked by deepakscholar385, 2 months ago


\Huge\bf\underline{\underline{\red{★Question:-}}}
(x + 3)/(x - 2) - (1 - x)/x = 17/4
.

Please solve.
Don't spam!!​

Answers

Answered by MrImpeccable
3

ANSWER:

Given:

  • (x + 3)/(x - 2) - (1 - x)/x = 17/4

To Find:

  • Value of x

Solution:

We are given that,

\implies\sf\dfrac{x+3}{x-2}-\dfrac{1-x}{x}=\dfrac{17}{4}

On taking LCM in LHS,

\implies\sf\dfrac{(x+3)(x)-(1-x)(x-2)}{(x)(x-2)}=\dfrac{17}{4}

So,

\implies\sf\dfrac{(x^2+3x)-(x-x^2-2+2x)}{x^2-2x}=\dfrac{17}{4}

On simplifying,

\implies\sf\dfrac{x^2+3x-x+x^2+2-2x}{x^2-2x}=\dfrac{17}{4}

Solving like terms,

\implies\sf\dfrac{2x^2+2}{x^2-2x}=\dfrac{17}{4}

On cross-multiplying,

\implies\sf4(2x^2+2)=17(x^2-2x)

Hence,

\implies\sf8x^2+8=17x^2-34x

Transposing LHS to RHS,

\implies\sf0=17x^2-34x-8x^2-8

Hence,

\implies\sf9x^2-34x-8=0

On splitting the middle term,

\implies\sf9x^2-36x+2x-8=0

Taking common,

\implies\sf9x(x-4)+2(x-4)=0

Taking (x - 4) common,

\implies\sf(x-4)(9x+2)=0

So,

\implies\sf x-4=0\:\:\:and\:\:\:9x+2=0

Therefore,

\implies\bf x=4\:\:\:and\:\:\:x=\dfrac{-2}{9}

Similar questions