Math, asked by BrainlyPARCHO, 25 days ago

\huge \bf x = 3+2\sqrt{2}

\huge \bf \sqrt{x}-\dfrac{1}{\sqrt{x}} = ¿?

Answers

Answered by OoINTROVERToO
0

\displaystyle\bf x = 3+2\sqrt{2} \\ \displaystyle\sf \sqrt{x}-\dfrac{1}{\sqrt{x}} \\  \\ ~~~~~~~~~~~~~~~~~~~~~~~~~~ \\  \\ \begin{gathered} \begin{gathered}\displaystyle\sf :\implies \dfrac{1}{x} = \dfrac{1}{3+2\sqrt{2}}\\\end{gathered}\end{gathered} \\ \displaystyle\sf :\implies \dfrac{1}{3+2\sqrt{2}}\times \dfrac{3-2\sqrt{2}}{3-2\sqrt{2}} \\ \displaystyle\sf :\implies \dfrac{3-2\sqrt{2}}{3^2-(2\sqrt{2}^2)} \\ \displaystyle\sf :\implies \dfrac{3-2\sqrt{2}}{9-8} \\ \displaystyle\sf :\implies \dfrac{1}{x} = 3-2\sqrt{2} \\  \\ ~~~~~~~~~~~~~~~~~~~~~~~~~~ \\  \\ \displaystyle\sf :\implies x+\dfrac{1}{x} = (3+2\sqrt{2}) + (3-2\sqrt{2}) \\ \displaystyle\sf :\implies x+\dfrac{1}{x} = 3+2\sqrt{2} + 3 - 2\sqrt{2} \\ \displaystyle\sf :\implies x+\dfrac{1}{x} \\  \\ \sf  \small{So  \: here \:  we  \: know \:  that \:  we  \: may  \: split  \: the  \: number  \:  6 \:  into \:  4+2 } \\ \\  \displaystyle\sf :\implies x+\dfrac{1}{x} = 4 \\ \displaystyle\sf :\implies x+\dfrac{1}{x}-2 = 4 \\ \displaystyle\sf :\implies \bigg\lgroup \sqrt{x}-\dfrac{1}{\sqrt{x}}\bigg\rgroup^2 = 4 \\ \displaystyle\sf :\implies \sqrt{x}-\dfrac{1}{\sqrt{x}} = \sqrt{4} \\ \displaystyle\sf :\implies \sqrt{x}-\dfrac{1}{\sqrt{x}} = \pm 2 \\  \\ \displaystyle\therefore\:{\textbf{ \blue{The value of $ \sqrt{ \sf x}-\dfrac{\sf 1}{\sqrt{\sf x}}$ is \textbf{$\pm$2 }}}}

Answered by rohithkrhoypuc1
0

The value is to be 2

The square root x-1/root x is 2

Refer the attachment

Attachments:
Similar questions