Math, asked by MysteriousAryan, 7 months ago

\huge\bigstar\huge\tt\underline\blue{QUESTION}\bigstar


 \frac{1 + sec ( \alpha )}{sec (\alpha) }   =   \frac{sin {}^{2} ( \alpha )}{1 - cos( \alpha )}
\huge\bigstar\huge\tt\underline\blue{PROVE}\bigstar

Answers

Answered by ItzDeadDeal
4

Answer:

</p><p></p><p>\frac{1}{sec^{2} \alpha } = cos {}^{2} \alphasec2α1=cos2α</p><p></p><p>cos^{4} \alpha + 2cos^{2} (1 - \cos {}^{2} \alpha )cos4α+2cos2(1−cos2α)</p><p></p><p>

Hope it helps you

Answered by sk181231
4

Answer:

\huge\bigstar\huge\tt\underline\red{ANsWER}\bigstar

given -  \\

  \: L.H.S = \frac{1 + sec ( \alpha )}{sec (\alpha) }  = \frac{sin {}^{2} ( \alpha )}{1 - cos( \alpha )}  \\  \\ \frac{1 + sec ( \alpha )}{sec (\alpha) }  =  \frac{1 +  \frac{1}{cos( \alpha )} }{ \frac{1}{cos( \alpha )} }  \\  =  \frac{ \frac{cos( \alpha ) + 1}{cos( \alpha )} }{ \frac{1}{cos( \alpha )} }  = cos ( \alpha ) + 1 \\  =    \frac{(1 - cos( \alpha ))(1 + cos( \alpha ))}{1 - cos( \alpha )}  \\  =  \frac{1 - cos {}^{2} ( \alpha )}{1 - cos( \alpha )}  =  \frac{sin {}^{2} ( \alpha )}{1 - cos( \alpha )}  \\  = R.H.S

Similar questions