Math, asked by Mysterioushine, 9 months ago

\huge\blue{\bold{\underline{\underline{Question:-}}}}

If α , β are the roots of the quadratic equation 3x² + 2x - 1 = 0 , Then find the quadratic equation whose roots are

(i) α + k , β + k

(ii) α - k , β - k

[ Question related to Transfirmed Quadratic equations . NO SPAM ] ​

Answers

Answered by BrainlyPopularman
85

GIVEN :

A quadratic equation 3x² + 2x - 1 = 0 which have two roots α and β.

TO FIND :

Quadratic equation whose roots are –

(i) α + k , β + k

(ii) α - k , β - k

SOLUTION :

 \bf  \implies 3 {x}^{2}  + 2x - 1 = 0

• Splitting Middle term –

 \bf  \implies 3 {x}^{2}  + 3x - x - 1 = 0

 \bf  \implies 3x(x + 1) -(x + 1) = 0

 \bf  \implies (3x - 1)(x + 1) = 0

 \bf  \implies x =  \dfrac{1}{3},  - 1

• Hence –

 \bf  \implies \large { \boxed{ \bf \alpha  =  \dfrac{1}{3}}} \:  \: and \:  \:{ \boxed{ \bf  \beta =  - 1}}

(i) Quadratic equation which roots are α + k , β + k.

• We know that a quadratic equation –

 \bf  \:  \:  \:  \bigstar  \:  \:  \:  \large{ \boxed{ \bf {x}^{2}  - (sum \:  \: of \:  \: roots)x + (product \:  \: of \:  \: roots) = 0}}

▪︎Now –

• Sum of roots = (α + k) + (β + k) = (⅓ + k) + (-1 + k) = 2k - ⅔

• Product of roots = (α + k).(β + k) = (⅓ + k).(-1 + k) = k² - ⅔ k - ⅓

• So that , Quadratic equation –

 \bf  \implies{ \boxed{ \bf {x}^{2}  -  \left(2k -  \dfrac{2}{3} \right)x + \left( {k}^{2} - \dfrac{2}{3}k -  \dfrac{1}{3}  \right) = 0}}

(ii) Quadratic equation which roots are α - k , β - k.

• We know that a quadratic equation –

 \bf  \:  \:  \:  \bigstar  \:  \:  \:  \large{ \boxed{ \bf {x}^{2}  - (sum \:  \: of \:  \: roots)x + (product \:  \: of \:  \: roots) = 0}}

▪︎Now –

• Sum of roots = (α - k) + (β - k) = (⅓ - k) + (-1 - k) = - ⅔

• Product of roots = (α - k).(β - k) = (⅓ - k).(-1 - k) = k² + ⅔ k - ⅓

• So that , Quadratic equation –

 \bf  \implies{ \boxed{ \bf {x}^{2}  +  \dfrac{2}{3} x + \left( {k}^{2} + \dfrac{2}{3}k -  \dfrac{1}{3}  \right) = 0}}


BloomingBud: very nice
Similar questions