Math, asked by itzCutieangle, 9 days ago

\huge \blue \star{ \green{ \boxed{ \boxed{ \boxed{ \purple{ \mathfrak{Question :}}}}}}} \blue\star

\mathtt{\bf{\underline{\blue{need\: full\: explanation\:}}}}

\mathtt{\bf{\underline{\red{don't\: spam\:}}}}

\mathtt{\bf{\underline{\pink{copied \: answer \: will\: be \: deleted\:}}}}


Attachments:

Answers

Answered by senboni123456
4

Answer:

Step-by-step explanation:

We have,

\displaystyle\tt{9^n=\left(1+8\right)^n}

\displaystyle\tt{\implies\,9^n=\,^nC_{0}(1)^n+\,^nC_{1}(1)^{n-1}\cdot8+\,^nC_{2}(1)^{n-2}\cdot8^{2}+\cdots+\,^nC_{n-1}(1)^{n-(n-1)}\cdot8^{n-1}+\,^nC_{n}8^{n}}\displaystyle\tt{\implies\,9^n=1+8n+\,^nC_{2}\,8^2+\cdots+\,^nC_{n-1}\,8^{n-1}+\,^nC_{n}\,8^{n}}

\displaystyle\tt{\implies\,9^n\cdot9=9+72n+9\left(\,^nC_{2}\,8^2+\cdots+\,^nC_{n-1}\,8^{n-1}+\,^nC_{n}\,8^{n}\right)}

\displaystyle\tt{\implies\,9^{n+1}=9+8n+64n+9\left(\,^nC_{2}\,8^2+\,^nC_{3}\,8^3+\cdots+\,^nC_{n-1}\,8^{n-1}+\,^nC_{n}\,8^{n}\right)}

\displaystyle\tt{\implies\,9^{n+1}-8n-9=64n+9\left(\,^nC_{2}\,8^2+\,^nC_{3}\,8^3+\cdots+\,^nC_{n-1}\,8^{n-1}+\,^nC_{n}\,8^{n}\right)}

\displaystyle\tt{\implies\,9^{n+1}-8n-9=64n+9\cdot8^2\left(\,^nC_{2}+\,^nC_{3}\,8+\cdots+\,^nC_{n-1}\,8^{n-3}+\,^nC_{n}\,8^{n-2}\right)}

\displaystyle\tt{\implies\,9^{n+1}-8n-9=64\left\{n+9\left(\,^nC_{2}+\,^nC_{3}\,8+\cdots+\,^nC_{n-1}\,8^{n-3}+\,^nC_{n}\,8^{n-2}\right)\right\}}

The term inside the parenthesis is an integer, say m, so,

\displaystyle\tt{\implies\,9^{n+1}-8n-9=64\left\{n+9m\right\}}

Since n, m ∈ Z, so, n+9m ∈ Z,

Put n+9m=k,

\displaystyle\tt{\implies\,9^{n+1}-8n-9=64\,k}

Hence, \tt{\blue{9^{n+1}-8b-9}} is divisible by 64

Answered by MISSHOTCHOCOLATE
1

This is your answer... Hope you've got your answer

Attachments:
Similar questions