Math, asked by Anonymous, 2 days ago


 \huge\bold \color{brown}{( \int^{a}_{1} (2x) - 1dx)dx = 6}


❖ᴏɴʟʏ ᴘʀᴏᴘᴇʀ ꜱᴏʟᴠᴇᴅ ᴀɴꜱᴡᴇʀ ᴡɪᴛʜ ɢᴏᴏᴅ ᴇxᴘʟᴀɴᴀɪᴏɴ ɴᴇᴇᴅᴇᴅ
❖ ɴᴏ ꜱᴘᴀᴍᴍɪɴɢ
❖ᴏɴʟʏ ꜰᴏʀ ᴍᴏᴅᴇʀᴀᴛᴏʀꜱ, ʙʀᴀɪɴʟʏ ꜱᴛᴀʀꜱ ᴀɴᴅ ᴏᴛʜᴇʀ ʙᴇꜱᴛ ᴜꜱᴇʀꜱ​​​​​​​​​​​​​​​​​​​​​​​​​

Attachments:

Answers

Answered by Sahan677
47

 \bold{{( \int^{a}_{1} (2x) - 1dx)dx = 6}}

 \bold{( \int^{a} _{1}2xdx +  \int^{a}_{1} - 1dx)dx}

 \bold{2( \int^{a} _{1}xdx +  \int^{a}_{1} - 1dx)dx}

 \bold{ (2( \frac{1}{x}  {x}^{2} ] {}^{a}_{1}) +  \int {}^{a}_{1} - 1dx)dx}

 \bold{ (2( \frac{ {x}^{2} }{2}] {}^{a}_{1}) +  \int {}^{a}_{1} - 1dx)dx}

 \bold{ (2( \frac{ {x}^{2} }{2}] {}^{a}_{1}) +  - x] {}^{a}_{1}})dx

 \bold{(2(( \frac{ {a}^{2} }{2} ) -  \frac{ {1}^{2} }{2} ) +  - x] {}^{a}  _{1})dx}

 \bold{(2( \frac{ {a}^{2} }{2} -  \frac{ {1}^{2} }{2} ) +  (- a) + 1 \times 1)dx}

 \bold{(2( \frac{1}{2}  {a}^{2}  -  \frac{1}{2} ) - a + 1)dx}

 \bold{(2( \frac{ {a}^{2} }{2}   -  \frac{1}{2} ) - a + 1)dx}

\bold{(2\frac{ {a}^{2} }{2}   + 2( -  \frac{1}{2} ) - a + 1)dx}

  \bold{{a}^{2}  + 2(  - \frac{1}{2} ) - a + 1)dx}

  \bold{{a}^{2}    - {1}  - a + 1}

  \bold{{(a}^{2} - a + 0)dx}

  \bold{{(a}^{2} - a )dx}

  \bold{{(a}^{2}d - a d)x}

  \bold{{a}^{2}dx - a dx}

Answered by goravyadavyadav314
1

Your Question

Solution.

Attachments:
Similar questions