Math, asked by creamiepie, 1 year ago

\huge\bold\color{heya\: mate}

here's your question ⏩⏩
____________________
<b><u>Prove that:-</u></b>

  \bold {s =  \frac{n}{2} [2a + (n - 1)d] }
where a = 1st term,d =common difference

____________________

 \bold{hurry \: up \: tomorrow  \:   is \: my \: exam}
❎NO SPAMMIMG PLEASE❎

✅ CORRECT AND CONTENT QUALITY USER =BRAINLIEST ANSWER✅

Answers

Answered by Anonymous
0
hey mate.
here's the solution
Attachments:
Answered by abhi569
0

In AS,

a = first term

d = common difference

n = number of terms

l = last term or

l th term = a + ( n - 1 )d



We know that S_{n} is the sum of all the terms. In the question, let there are n terms. So


S_{n}=a+(a+d)+(a+2d)+(a+3d)+.........(l-3d)+(l-2d)+(l-d)+l


S_{n}=a+a+d+a+2d+a+3d+.........l-3d+l-2d+l-d+l\:\:\:\:\:\:\:\:\:\:\:\:\:\textit{\textbf{...(i)}}



The sum of n terms can also be written in the reverse form of this.


S_{n}=l+(l-d)+(l-2d)+(l-3d)+......(a+3d)+(a+2d)+(a+d)+a


S_{n}=l+l-d+l-2d+l-3d+......a+3d+a+2d+a+d+a\:\:\:\:\:\:\:\:\:\:\:\:\textit{\textbf{...(ii)}}



     

Adding ( i ) & ( ii ) ,


2S_{n}=a+l+a+d+l-d+a+2d+l-2d+a+3d+l-3d+.......a+3d+l-3d+a+2d+l-2d+a+d+l-d+a+d


2S_{n}=(a+l)+(a+l)+(a+l)+.........n\:terms


2S_{n}=n( a + l )


S_{n}=\dfrac{n}{2}(a+l)


l th term = a + ( n - 1 )d


S_{n}=\dfrac{n}{2}(a+a+(n-1)d)


S_{n}=\dfrac{n}{2}(2a+(n-1)d

                Proved

Similar questions