Math, asked by Anonymous, 1 month ago


\huge \bold{ \gamma  = \displaystyle \lim_{x \to \infty}   \Bigg(\sum\limits_{k=1}^{n} \frac{1}{k}  -  \displaystyle \ln \: n \Bigg)}
Wrong answers will be reported​

Answers

Answered by MrPagalBoi
4

\large\color{lime}\boxed{\colorbox{black}{Answer : - }}

 \bold{ \gamma = \displaystyle   \lim_{x \to \infty} (\sum\limits_{k=1}^{n} \frac{1}{k} - \displaystyle \ln \: n)}</p><p>

 \gamma (k + 1) -  \gamma (k) =  \frac{1}{k}  = &gt; \sum\limits_{k=1}^{n} \frac{1}{k} </p><p>

 =  \gamma \:  (n + 1) +  \gamma

 =  \gamma (1) =  -  \gamma

2) \:  \gamma (x) =  log(x)  -  \frac{1}{2x}  - 0( \frac{1}{ {x}^{2} } )

now :

 lim_{x \to \infty}(\sum\limits_{k=1}^{n} \frac{1}{k} - \displaystyle  log(n)  = lim_{x \to \infty}  \: \gamma (n + 1) +  \gamma  - 10y(n)</p><p></p><p>[tex] \gamma  = 0.5772

Answered by Anonymous
4

Answer:

Answer:Hence the value if r=0

This is the right anawer I hope it helpful to you

Attachments:
Similar questions