Biology, asked by kriti2000, 11 months ago

 \huge\bold{heyyaa}
__________________☺⭐

A fruit fly is heterozygous for sex linked genes. when mated with normal female fly the male specific chromosome will enter 1 cell in the proportion???

No Spam ❎ ❎ ​

Answers

Answered by Anam45
2

Women has XY and men has XXY chromosomes. For such things men gives one cell to women and women's cell become XXY....


kriti2000: Ratio
arun00: Yaaa
tina9961: Ji??
arun00: Yes what do you need
tina9961: Lol.. Muze kya chahiye ho Sakta h
arun00: Sorry i cannot understand hindi
Anam45: why? are you a British
arun00: No I am a indian who lives in France
arun00: By the way I love you
Answered by Anonymous
9

Sex linkage describes the patterns of inheritance and presentation when a mutated gene (an allele) is present on a sex chromosome (an allosome) rather than a non-sex chromosome (an autosome). They are characteristically different from the autosomal forms of dominance and recessiveness.

Since humans have several times as many genes on the female X chromosome than on the male Y chromosome, X-linked traits are much more common than Y-linked traits. Additionally, there are more X-linked recessive conditions than X-linked dominant, and X-linked recessive conditions affect males much more commonly, due to males only having the one X chromosome required for the condition to present.

In humans, X-linked traits are inherited from a carrier or affected mother or from an affected father. In X-linked recessive conditions, a son born to an unaffected father and a carrier mother has a 50% chance of inheriting the mother's X chromosome carrying the mutant allele and presenting with the condition. A daughter on the other hand has a 50% chance of being a carrier, however a fraction of carriers may display a milder (or even full) form of the condition due to their body's normal X-inactivation process preferably inactivating a certain parent's X chromosome (the father's in this case), a phenomenon known as skewed X-inactivation. If the condition is dominant, or if the father is also affected, the daughter has a 50% chance of being affected, with an additional 50% chance of being a carrier in the second case. A son born to an affected father and a non-carrier mother will always be unaffected due to not inheriting the father's X chromosome. A daughter on the other hand will always be a carrier (some of which may present with symptoms due to aforementioned skewed X-inactivation), unless the condition is dominant, in which case she will always be affected. There are a few Y-linked traits; these are inherited by sons from their father and are always expressed.

The incidence of X-linked recessive conditions in females is the square of that in males: for example, if 1 in 20 males in a human population are red-green color blind, then 1 in 400 females in the population are expected to be color-blind (1/20)*(1/20).

The inheritance patterns are different in animals which use different sex-determination systems. In the ZW sex-determination system used by birds, the mammalian pattern is reversed, since the male is the homogametic sex (ZZ) and the female is heterogametic (ZW).

In classical genetics, a mating experiment called a reciprocal cross is performed to test if an animal's trait is sex-linked.

Similar questions