Note:-
Spam answers will be reported!
Attachments:
Answers
Answered by
68
Step-by-step explanation:
Given :-
[1+(1/Tan²θ)] + [ 1+(1/Cot²θ)]
Required To Prove :-
[1+(1/Tan²θ)]+[1+(1/Cot²θ)] = 1/(Sin²θ-Sin⁴θ)
Proof :-
On taking LHS
[1+(1/Tan²θ)] + [ 1+(1/Cot²θ)]
We know that
Tan θ = 1/ Cot θ
and
Cot θ = 1/Tan θ
=> (1+Cot²θ)(1+Tan²θ)
=> (Cosec² θ) (Sec²θ)
Since Cosec²θ - Cot²θ = 1 and
Sec²θ - Tan²θ = 1
=> (1/Sin² θ)(1/Cos² θ)
Since , Cosec θ = 1/Sinθ
and Sec θ = 1/Cosθ
=> 1/(Sin²θ Cos²θ)
We know that Sin²θ+Cos²θ = 1
=> 1/[(Sin²θ)(1-Sin²θ)]
=> 1/(Sin²θ-Sin²θ Sin²θ)
=> 1/(Sin²θ - Sin⁴θ)
=> RHS
=> LHS = RHS
Hence, Proved.
Answer:-
[1+(1/Tan²θ)]+[1+(1/Cot²θ)] = 1/(Sin²θ-Sin⁴θ)
Used formulae:-
→ Tan θ = 1/ Cot θ
→ Cot θ = 1/Tan θ
→ Cosec θ = 1/Sinθ
→ Sec θ = 1/Cosθ
Used Identities :-
→ Cosec²θ - Cot²θ = 1
→ Sec²θ - Tan²θ = 1
→ Sin²θ+Cos²θ = 1
Attachments:
Similar questions