Math, asked by Anonymous, 1 month ago

\huge \bold \red{\boxed{ \bold{ \int  \frac{ {e}^{x} }{x} \: dx}}}

Answers

Answered by sajan6491
13

 \displaystyle{ \bold \red{\int{\frac{e^{x}}{x} d x}}}

This integral (Exponential Integral) does not have a closed form:

{ \displaystyle{ \bold \color{red}{\int{\frac{e^{x}}{x} d x}} = \color{red}{\operatorname{Ei}{\left(x \right)}}}}

Therefore,

 \displaystyle \bold \red{\int{\frac{e^{x}}{x} d x} = \operatorname{Ei}{\left(x \right)}}

 { \displaystyle{\bold \red{ \int{\frac{e^{x}}{x} d x} = \operatorname{Ei}{\left(x \right)}+C}}}

Answered by OoAryanKingoO78
2

Answer:

 \displaystyle{ \bold \red{\int{\frac{e^{x}}{x} d x}}}

This integral (Exponential Integral) does not have a closed form:

{ \displaystyle{ \bold \color{red}{\int{\frac{e^{x}}{x} d x}} = \color{red}{\operatorname{Ei}{\left(x \right)}}}}

Therefore,

 \displaystyle \bold \red{\int{\frac{e^{x}}{x} d x} = \operatorname{Ei}{\left(x \right)}}

 { \displaystyle{\bold \red{ \int{\frac{e^{x}}{x} d x} = \operatorname{Ei}{\left(x \right)}+C}}}

Similar questions