Math, asked by Anonymous, 1 month ago


\huge{{\bold \red{ \displaystyle \lim_{x \to 2}\dfrac{ {x}^{2} - 4}{x - 2}( \frac{0}{0} )}}}


❖ᴏɴʟʏ ᴘʀᴏᴘᴇʀ ꜱᴏʟᴠᴇᴅ ᴀɴꜱᴡᴇʀ ᴡɪᴛʜ ɢᴏᴏᴅ ᴇxᴘʟᴀɴᴀɪᴏɴ ɴᴇᴇᴅᴇᴅ
❖ ɴᴏ ꜱᴘᴀᴍᴍɪɴɢ
❖ᴏɴʟʏ ꜰᴏʀ ᴍᴏᴅᴇʀᴀᴛᴏʀꜱ, ʙʀᴀɪɴʟʏ ꜱᴛᴀʀꜱ ᴀɴᴅ ᴏᴛʜᴇʀ ʙᴇꜱᴛ ᴜꜱᴇʀꜱ​​​​​​​​​​​​​​​​​​​​​​

Answers

Answered by TrustedAnswerer19
58

Method -1: Using formula

 \orange{\boxed{\boxed{\begin{array}{cc}\bf \: \to \:given :  \\  \\  \displaystyle \lim_{ \rm \: x \to \: 2}  \: \rm \:  \frac{ {x}^{2} - 4 }{x - 2}   \\  \\  \rm =\displaystyle \lim_{ \rm \: x \to \: 2}  \: \rm \: \frac{ {x}^{2}  -  {2}^{2} }{x - 2}  \\  \\  \pink{{\boxed{\begin{array}{cc}\bf\;\to \:we \: kmow \: that :  \\  \\\displaystyle \lim_{ \rm \: x \to \: a}  \: \rm \: \frac{ {x}^{2}  -  {a}^{2} }{x - a} = n {a}^{n - 1}   \end{array}}}}  \\  \sf \: apply \: this \: rule \\  \\  = 2 \times  {2}^{2 - 1}  \\  \\  = 2 \times 2 \\  \\  = 4 \\  \\  \\  \blue{ \boxed{ \therefore \: \displaystyle \lim_{ \rm \: x \to \: 2}  \: \rm \: \frac{ {x}^{2}  - 4}{x - 2}  = 4}}\end{array}}}}

Method -2: Simplification the expression

 {\boxed{\boxed{\begin{array}{cc}\bf\to \: given : \\  \\ \displaystyle \lim_{ \rm \: x \to \: 2}  \: \rm \: \frac{ {x}^{2} - 4 }{x - 2}   \\  \\  \sf \: by \: applying \: limit \: we \: get \:  \frac{0}{0}  \: form \\  \sf \: which \: is \: undefined. \\  \\   \red{\bf \: so \: simplify \: the \: limit} \\  \\ \displaystyle \lim_{ \rm \: x \to \: 2}  \: \rm \: \frac{ {x}^{2} -  {2}^{2}  }{x - 2}  \\  \\  = \displaystyle \lim_{ \rm \: x \to \: 2}  \: \rm \: \frac{(x + 2) \cancel{(x - 2)}}{ \cancel{(x - 2)}}  \\  \\ =  \displaystyle \lim_{ \rm \: x \to \: 2}  \: \rm \:(x + 2) \\  \\  \sf \: apply \: limit \\  \\   = 2 + 2 \\  \\  = 4 \\  \\  \blue{ \boxed{ \therefore \: \displaystyle \lim_{ \rm \: x \to \: 2}  \: \rm \: \frac{ {x}^{2} - 4 }{x - 2} = 4}} \end{array}}}}

Method -3: La'Hospital rules

Rule:

L'Hospital's Rule tells us that if we have an indeterminate form 0/0 or ∞/∞ all we need to do is differentiate the numerator and differentiate the denominator and then take the limit.

Now,

 \pink{\boxed{\boxed{\begin{array}{cc} \displaystyle \lim_{ \rm \: x \to \: 2}  \: \rm \: \frac{ {x}^{2}  - 4}{x - 2}  \\  \\  = \displaystyle \lim_{ \rm \: x \to \: 2}  \: \rm \: \frac{ \frac{d}{dx}( {x}^{2}   - 4)}{ \frac{d}{dx}(x - 2) }   \\  \\ = \displaystyle \lim_{ \rm \: x \to \: 2}  \: \rm \: \frac{ \frac{d}{dx}  \:  {x}^{2}  -  \frac{d}{dx}4 }{ \frac{d}{dx} \: x -  \frac{d}{dx}  2}  \\  \\  = \displaystyle \lim_{ \rm \: x \to \: 2}  \: \rm \: \frac{2x - 0}{1 - 0}  \\  \\  = \displaystyle \lim_{ \rm \: x \to \: 2}  \: \rm \:2x \\  \\  = 2 \times 2 \\  \\  = 4 \\  \\  \\  \blue{ \boxed{ \therefore \: \displaystyle \lim_{ \rm \: x \to \: 2}  \: \rm \: \frac{ {x}^{2} - 4 }{x - 2}  = 4}}\end{array}}}}

Similar questions