Math, asked by Anonymous, 2 days ago


  \huge\bold \red{{ \displaystyle \lim_{x \to0}}( \frac{1 -  \cos2x}{2x \sin2x} )}




❖ᴏɴʟʏ ᴘʀᴏᴘᴇʀ ꜱᴏʟᴠᴇᴅ ᴀɴꜱᴡᴇʀ ᴡɪᴛʜ ɢᴏᴏᴅ ᴇxᴘʟᴀɴᴀɪᴏɴ ɴᴇᴇᴅᴇᴅ
❖ ɴᴏ ꜱᴘᴀᴍᴍɪɴɢ
❖ᴏɴʟʏ ꜰᴏʀ ᴍᴏᴅᴇʀᴀᴛᴏʀꜱ, ʙʀᴀɪɴʟʏ ꜱᴛᴀʀꜱ ᴀɴᴅ ᴏᴛʜᴇʀ ʙᴇꜱᴛ ᴜꜱᴇʀꜱ​​​​​​​​​​​​​​​​​​​​​​​

Answers

Answered by TrustedAnswerer19
40

[ Kindly see this answer from brainly app ]

{\boxed{\boxed{\begin{array}{cc}\bf \: \to \:given :  \\  \\ \displaystyle \lim_{x \to \: 0} \:  \rm \:  \left( \frac{1 - cos2x}{2x \: sin2x}  \right) \\  \\   = \displaystyle \lim_{x \to \: 0}  \rm \: \frac{1}{2}  \left( \frac{1 - cos2x}{x \: sin2x}  \right) \\  \\  \orange{{\boxed{\begin{array}{cc}\bf \: \to \:we \: know \: that :  \\   \\ \hookrightarrow \:  \sf  \: \rm1 - cos2 \theta = 2 {sin}^{2} { \theta}   \\  \\ \hookrightarrow \:  \sf \: \rm \: sin2 \theta = 2sin \theta.cos \theta\end{array}}}}  \\  \pink{ \sf \: apply \: this} \\  \\  =  \frac{1}{2}\displaystyle \lim_{x \to \: 0}   \rm \:  \frac{2  \: {sin}^{2} x}{x.2 \: sinx \: cos \: x} \\  \\  =  \frac{1}{2}  \displaystyle \lim_{x \to \: 0} \rm \:  \frac{sin \: x}{x. \: cos \:  \: x}  \\  \\   = \frac{1}{2}  \: \displaystyle \lim_{x \to \: 0}  \rm \: \left ( \:  \frac{sin \: x}{x}  \times  \frac{1}{cos \: x} \right) \\  \\  =  \frac{1}{2}  \times \displaystyle \lim_{x \to \: 0} \rm \:  \frac{sin \: x}{x}   \times \displaystyle \lim_{x \to \: 0}  \rm \: \frac{1}{cos \: x}  \\  \\  \orange{{\boxed{\begin{array}{cc}\bf \:  \to \:we \: know \: that :  \\  \\ \displaystyle \lim_{x \to \: 0} \rm \frac{sin \: x}{x} = 1 \end{array}}}}  \\ \pink{ \sf \: apply \: this} \\  \\  =  \frac{1}{2} \times 1 \times \displaystyle \lim_{x \to \: 0} \rm \frac{1}{cos \: x}  \\  \\  \sf \: apply \: limit \\  \\   =  \frac{1}{2}  \times  \frac{1}{ \rm \: cos \: 0}   \\  \\  =  \frac{1}{2} \times  \frac{1}{1}   \\  \\  =  \frac{1}{2} \end{array}}}}

Answered by sajan6491
14

 \bold \red{\lim_{x \to 0} \frac{1 - \cos{\left(2 x \right)}}{2 x \sin{\left(2 x \right)}}}

 \bold \red{\color{red}{\lim_{x \to 0} \frac{1 - \cos{\left(2 x \right)}}{2 x \sin{\left(2 x \right)}}} = \color{red}{\left(\frac{\lim_{x \to 0} \frac{1 - \cos{\left(2 x \right)}}{x \sin{\left(2 x \right)}}}{2}\right)}}

 \bold \red{\frac{\color{red}{\lim_{x \to 0} \frac{1 - \cos{\left(2 x \right)}}{x \sin{\left(2 x \right)}}}}{2} = \frac{\color{red}{\lim_{x \to 0} \frac{\frac{d}{dx}\left(1 - \cos{\left(2 x \right)}\right)}{\frac{d}{dx}\left(x \sin{\left(2 x \right)}\right)}}}{2}}

  \bold \red{\frac{\color{red}{\lim_{x \to 0} \frac{\frac{d}{dx}\left(1 - \cos{\left(2 x \right)}\right)}{\frac{d}{dx}\left(x \sin{\left(2 x \right)}\right)}}}{2} = \frac{\color{red}{\lim_{x \to 0} \frac{2 \sin{\left(2 x \right)}}{2 x \cos{\left(2 x \right)} + \sin{\left(2 x \right)}}}}{2}}

 \bold \red{\frac{\color{red}{\lim_{x \to 0} \frac{2 \sin{\left(2 x \right)}}{2 x \cos{\left(2 x \right)} + \sin{\left(2 x \right)}}}}{2} = \frac{\color{red}{\left(2 \lim_{x \to 0} \frac{\sin{\left(2 x \right)}}{2 x \cos{\left(2 x \right)} + \sin{\left(2 x \right)}}\right)}}{2}}

\color{red}{\lim_{x \to 0} \frac{\sin{\left(2 x \right)}}{2 x \cos{\left(2 x \right)} + \sin{\left(2 x \right)}}} = \color{red}{\lim_{x \to 0} \frac{\frac{d}{dx}\left(\sin{\left(2 x \right)}\right)}{\frac{d}{dx}\left(2 x \cos{\left(2 x \right)} + \sin{\left(2 x \right)}\right)}}

\color{red}{\lim_{x \to 0} \frac{\frac{d}{dx}\left(\sin{\left(2 x \right)}\right)}{\frac{d}{dx}\left(2 x \cos{\left(2 x \right)} + \sin{\left(2 x \right)}\right)}} = \color{red}{\lim_{x \to 0} \frac{2 \cos{\left(2 x \right)}}{- 4 x \sin{\left(2 x \right)} + 4 \cos{\left(2 x \right)}}}

\color{red}{\lim_{x \to 0} \frac{2 \cos{\left(2 x \right)}}{- 4 x \sin{\left(2 x \right)} + 4 \cos{\left(2 x \right)}}} = \color{red}{\lim_{x \to 0}\left(- \frac{\cos{\left(2 x \right)}}{2 x \sin{\left(2 x \right)} - 2 \cos{\left(2 x \right)}}\right)}

\color{red}{\lim_{x \to 0}\left(- \frac{\cos{\left(2 x \right)}}{2 x \sin{\left(2 x \right)} - 2 \cos{\left(2 x \right)}}\right)} = \color{red}{\left(\frac{1}{2}\right)}

 \bold \red{Therefore,}

 \bold \red{\lim_{x \to 0} \frac{1 - \cos{\left(2 x \right)}}{2 x \sin{\left(2 x \right)}} = \frac{1}{2}}

Similar questions