Math, asked by ayush579, 1 year ago

\huge{\bold{\red{HELP\:Me}}}

\huge\boxed{Please \:Fast}
❤️❤️❤️❤️❤️❤️❤️❤️
Guys barish ho rhi hai isliye answer me fast️️️️️️️️
Delhi
☕☕☕☕☕☕☕☕☕

<b><marquee>
‌✌️ ✨HELP ME✨ ✌️ 

Attachments:

Answers

Answered by Anonymous
16
\huge\bold{B-\:A-\:C-\:K}

<u><b>HEY BUDDY!!!!!

\huge\bold{SOLUTION}

from the figure

given= <OAB= 30° & <BOC = 57°

REFER ATTACHMENT..

&lt;b&gt;&lt;u&gt;RGRDSM@STYLGG
Attachments:
Answered by Avengers00
19
\underline{\underline{\huge{\textbf{Solution:}}}}

Given,
\angle{OAB} = 30^{\circ} ————[1]

\angle{OCB} = 57^{\circ} ————[2]

\angle{BOC} = ? ^{\circ}

\angle{AOC} = ? ^{\circ}

\underline{\large{\textsf{Step-1:}}}
Note the Radius of the given Circle

As \textbf{O} is the \textsf{Centre of the circle}

OA , OB, OC represents the radius of the circle.

\therefore
\textbf{OA = OB = OC} ————[3]

\underline{\large{\textsf{Step-2:}}}
Apply the theorem,
\textbf{Opposite\: Angles\: to\: equal\: sides\: of\: a\: triangle\: are\: equal}

\angle{OBA} = \angle{BAO} = 30^{\circ} ————[4]

(\angle{BAO}= \angle{OAB} and from[1] & [3])

\angle{OBC} = \angle{BCO} = 57^{\circ} ————[5]

(\angle{BCO}= \angle{OCB} and from[2] & [3])

\underline{\large{\textsf{Step-3:}}}
Apply the Angle Sum property in \triangle{AOB} and \triangle{OCB}

\textsf{Angle sum property of triangle states that sum of angles in a triangle is $180^{\circ}$}

In \triangle{AOB},
\implies \angle{AOB}+\angle{OBA}+\angle{BAO}= 180^{\circ}

Substituting [4]

\implies \angle{AOB} + 30^{\circ} + 30^{\circ} = 180^{\circ}

\implies \angle{AOB} + 60^{\circ} = 180^{\circ}

\implies \angle{AOB} = 180^{\circ} - 60^{\circ}

\implies \angle{AOB} = 120^{\circ} ————[6]

In \triangle{OCB},
\implies \angle{COB}+\angle{OBC}+\angle{BCO}= 180^{\circ}

Substituting [5]

\implies \angle{COB}+ 57^{\circ} + 57^{\circ} = 180^{\circ}

\implies \angle{COB}+ 114^{\circ}= 180^{\circ}

\implies \angle{COB} = 180^{\circ} - 114^{\circ}

\implies \angle{COB} = 66^{\circ} ————[7]

\underline{\large{\textsf{Step-4:}}}
Express \angle{AOB} in terms of \angle{AOC} and \angle{COB}

From the figure,
\angle{AOB} = \angle{AOC} + \angle{COB}

Substituting [6] & [7]

\implies 120^{\circ} = \angle{AOC} + 66^{\circ}

\implies \angle{AOC} = 120^{\circ} - 66^{\circ}

\implies \angle{AOC} = 54^{\circ}

\therefore

\bigstar \underline{\mathbf{\angle{BOC} = \angle{COB} = 66^{\circ}}}

\: \: \: \underline{\mathbf{\angle{AOC} = 54^{\circ}}}
Attachments:
Similar questions