Math, asked by MinDMatter, 6 hours ago

\huge\bold\red{{HELP}}

Attachments:

Answers

Answered by Aryan0123
29

Solution:

\boldsymbol{A) \: \dfrac{x^{2}y}{2xy^{2}}}\\\\

This can be written as:

\implies \sf{\dfrac{(x)(x)(y) }{2(x)(y)(y)}}\\\\

On cancelling the common terms,

\implies \sf{\dfrac{(\not{x})(x)(\not{y}) }{2(\not{x})(\not{y})(y)}}\\\\

\implies \sf{\dfrac{x}{2y}}\\\\

\therefore \boxed{\bf{\dfrac{x^{2}y}{2xy^{2}}=\dfrac{x}{2y}}}\\\\

\\

\boldsymbol{B) \: \: \dfrac{4q-1}{1-4q}}\\\\

This can also be written as:

\implies \sf{\dfrac{4q-1}{-(4q-1)}}\\\\

Cancelling (4q - 1) in numerator and denominator,

\implies \sf{\dfrac{1}{-1}}\\\\

\implies \sf{-1}\\\\

\therefore \boxed{\bf{\dfrac{4q-1}{1-4q}=-1}}\\\\

\\

\boldsymbol{a. \: \: \dfrac{-3a^{3}b^{3}}{6ab^{3}}}\\\\

This can be simplified and written as:

\implies \sf{\dfrac{3(-1)(a)(a)(a)(b^{3})}{3(2)(a)(b^{3})}}\\\\

On cancelling the common terms,

\implies \sf{\dfrac{\not{3}(-1)(\not{a})(a)(a)(\not{b^{3}})}{\not{3}(2)(\not{a})(\not{b^{3}})}}\\\\

\implies \sf{\dfrac{-a^{2}}{2}}\\\\

\therefore \: \boxed{\bf{\dfrac{-3a^{3}b^{3}}{6ab^{3}}=\dfrac{-a^{2}}{2}}}\\\\

\\

\boldsymbol{b. \: \: \dfrac{4x-2}{8x^{2}-4}}\\\\

Taking 2 as a common factor,

\implies \sf{\dfrac{2(2x-1)}{2(4x^{2}-2)}}\\\\

\implies \sf{\dfrac{2x-1}{4x^{2}-2}}\\\\

\therefore \: \boxed{\bf{\dfrac{4x-2}{8x^{2}-4}=\dfrac{2x-1}{4x^{2}-2}}}\\\\

Answered by Anonymous
11

\huge\green{Solution}

Question :- A

Also Written as :-

\frac{x \times x \times y}{2 \times x \times y \times y}  =  \frac{x}{2y}

Question:-B

Also written as:-

 \frac{ \: 4q - 1}{ - (4q - 1)}  =   - 1

Try it a:-

Also written as:-

 \frac{3 \times  - 1 \times a \times a \times a \times b \times b \times b}{3 \times 2 \times a \times b \times b \times b}  =  \frac{ -  {a}^{2} }{2}

Try it b:-

 \frac{4x - 2}{8 {x - 4}^{2} }  =  \frac{2(2x - 1)}{2( {4x }^{2} - 2 ) }  =  \frac{2x - 1}{4 {x}^{2} - 2 }

\huge\red{Thank \: You}

Similar questions