Math, asked by MinDMatter, 21 days ago

\huge\bold\red{{HELP}}

Attachments:

Answers

Answered by Aryan0123
35

Solution:

2nd row:

  • a = 12
  • b = m - 1/12

To find: a*b which is nothing but a × b

\\

\sf{a \times b  \: =  \: 12 \bigg( m + \dfrac{1}{12} \bigg)  =  12m -  \dfrac{12}{12} } \\  \\

 \therefore \boxed{ \sf{(a \times b) = 12m -  \dfrac{12}{12} }} \\  \\

For Simplified form, just write 12/12 as 1.

 \therefore \boxed{ \sf{Simplified \: form = 12m - 1}} \\  \\

\\

3rd row:

 \sf{(a \times b) = 3x \bigg( \dfrac{4}{x}  + 4 \bigg) =  \frac{12x}{x}  + 12x} \\  \\

For simplified form, cancel x in numerator and denominator and take 12 as a common factor.

 \sf{Simplified \: form = 12 + 12x = 12(1 + x)} \\  \\

 \therefore  \boxed{\sf{Simplified \:  \: form = 12(x + 1)}} \\  \\

\\

4th row:

 \sf{(a \times b) = 10a \bigg( \dfrac{1}{3a}  +  \frac{3}{5a} \bigg) } \\  \\

 \implies \sf{(a \times b) = 10a \bigg( \dfrac{5 + 9}{15a} \bigg) } \\  \\

 \implies \sf{(a \times b) = 10a \bigg( \dfrac{14}{15a}  \bigg)} \\  \\

 \implies \sf{(a \times b) =  \dfrac{140a}{15a} } \\  \\

Simplified form: Divide by 5a in both numerator and denominator.

 \therefore \boxed{ \sf{Simplified \:  \: form =  \frac{28}{3} }} \\  \\

Answered by Anonymous
25

SEE BELOW

\huge\bold\blue {Solution : }

2nd row :-

  •  a \times b = 12(m +  \frac{1}{12} ) = 12m -  \frac{12}{12}

Simplified form:-

  • 12m - 1

3rd row :-

  • a \times b = 3x( \frac{4}{x}  + 4) =  \frac{12x}{x}  + 12x \\  = 12 + 12x \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

Simplified from :-

  • 12(x + 1)

4th row :-

  • a \times b = 10a( \frac{1}{3a}  +  \frac{3}{5a} )  \\  = 10a( \frac{5 + 9}{15a})  =  \frac{140a}{15a}

simplified from :-

  •  \frac{140a}{15a}  =  \frac{140}{15}  =  \frac{28}{3}

\huge\bold\green{Thank \:  You}

Similar questions