Math, asked by Anonymous, 10 months ago

\huge\bold\red{Question}:-
____________________________________
If altitude of a right triangle is 7cm less than its base. If Hypotenuse is 13cm, find other two sides.
____________________________________
<marquee> No spam </marquee>

Answers

Answered by ShírIey
183

AnswEr :

\sf{Let\: Base\: of \: Right\: Triangle\: is \: x \; cm.}

\sf{Then, \: Altitude\: of \: Right\: Triangle\: is \: (x - 7) \; cm.}

\dag\:\: \small\bold{\underline{\sf{\red{Now,\:By\: using\: Pythagoras\: theorem}}}}

\longrightarrow\sf\: Base^2 \: + \; Altitude^2 \: = \: Hypotenuse^2

\longrightarrow\sf\: x^2 + (x - 7)^2 = 13^2

\:\:\:\:\:\: \footnotesize\bold{\underline{\sf{\pink{Using\; Identity\; (a \: -\: b)^2 \:=\:a^2\: + \: b^2 \:-\;2ab}}}}

\longrightarrow\sf\: x^2 + x^2  + 49 - 14x = 169

\longrightarrow\sf\: 2x^2 - 14x - 120 = 0

\longrightarrow\sf\: x^2 - 7x - 60 = 0

\longrightarrow\sf\: x^2 - 12x + 5x - 60 = 0

\longrightarrow\sf\: x(x - 12) + 5(x - 12) = 0

\longrightarrow\sf\: (x - 12) (x + 5) = 0

\longrightarrow\sf\: (x - 12) = 0

\longrightarrow\bold{x \: = \: 12}

\longrightarrow\sf\: (x + 5) = 0

\longrightarrow\bold{x \: = \: -5}

\rule{150}2

Side Can't be Negative.

Therefore, ( x = - 5) Neglected.

Altitude of Triangle = (x - 7) cm

\longrightarrow\sf\: 12 - 7

\longrightarrow\large{\underline{\boxed{\sf{\red{x \: = \: 5 \: cm}}}}}

Hence, Base of Triangle is 12 cm & Altitude is 5cm.

\rule{150}2


Anonymous: Amazing ✨
Answered by Raki4114
44

☯️ Given :-

  • The altitude of a right triangle is 7 cm is less than its base
  • Hypotenuse is 13 cm

☯️R.T.P :-

To find the other two sides

☯️ Solution :-

let the base be ' x '

According to Question,

altitude = x - 7 cm

Hypotenuse = 13 cm

☸️By Pythagoras therom , we get

 {h}^{2}  =  {s}^{2}  +  {s}^{2}

So, by substituting , we get

( {13)}^{2}  =  {x}^{2}  + ( {x - 7)}^{2}

169 =  {x}^{2}  +  {x}^{2}  - 14x + 49

169 = 2 {x}^{2}  - 14x + 49

2 {x}^{2}  - 14x + 49 - 169 = 0

2 {x}^{2}  - 14x - 120 = 0

2( {x}^{2}  - 7x - 60) = 0

 {x}^{2}  - 7x - 60 = 0

 {x}^{2}  - 12x + 5x - 60 = 0

x(x - 12) + 5(x - 12) = 0

(x - 12)(x + 5) = 0

x = 12 \: or \:  - 5

Side never be negative .

So, x = 12 cm

  • Base = 12 cm
  • Altitude = 12 - 7 = 5 cm
  • Hypotenuse = 13 cm

☯️ I hope it helps you....✌️✌️

Similar questions