Math, asked by ⲎσⲣⲉⲚⲉⲭⳙⲊ, 3 months ago


\huge\bold\red{➡ǫᴜᴇsᴛɪᴏɴ}
Evaluate the derivative of f(x) = sin2x using Leibnitz product rule.

✔Only mods/stars are allowed to answer​​

Answers

Answered by Anonymous
1

We have,

f(x) = sin {}^{2} 2x

On differentiating w.r.t X , we get

f {}^{1}(x) =  \frac{d}{dx} sin  {}^{2} 2 x

 {f}^{1} (x)2sin \: 2x \frac{d}{dx} (sin2)

 {f}^{1} (x) = 2sin \: 2xcos2x \times (2)

 {f}^{1} (x) = 2sin \: 4x

Hence, this is the answer.

brainlyGirl ❤️

Answered by Sagar9040
9

{\huge{\underline{\bf{\pink{Question}}}}}

Evaluate the derivative of f(x) = sin2x using Leibnitz product rule.

{\huge{\underline{\bf{\blue{Answer}}}}}

TO FIND

• Derivative of the function f(x) = sin(2x) by using Leibntiz product rule.

SOLUTION

• Leibntiz theorem applied when two function in Product form.

• If two function are 'u' & 'v' then nth Derivative of (u.v) –

\begin{gathered} \\ \bf \implies \dfrac{d^{n}(u.v)}{dx} = \: ^{n}c_{0} \dfrac{d^{n}(u)}{dx} (v) + \: ^{n}c_{1} \dfrac{d^{n - 1}(u)}{dx} \left(\dfrac{d(v)}{dx} \right) + .. + \: ^{n}c_{n}(u) \dfrac{d^{n}(v)}{dx} \\ \end{gathered}

• According to the question

\begin{gathered} \\ \bf \implies f(x) = \sin(2x) \\ \end{gathered} ⟹f(x)=sin(2x)

• We know that

\begin{gathered} \\ \bf \implies \sin(2x) = 2 \sin(x) \cos(x) \\ \end{gathered} ⟹sin(2x)=2sin(x)cos(x)

• So –

\begin{gathered} \\ \bf \implies f(x) = 2 \sin(x) \cos(x) \\ \end{gathered} ⟹f(x)=2sin(x)cos(x)

• Let's find first derivative

\begin{gathered} \\ \bf \implies \dfrac{d \{f(x) \}}{dx} = 2 \dfrac{d\{ \sin(x). \cos(x) \}}{dx} \\ \end{gathered} ⟹ dxd{f(x)}​	 =2 dxd{sin(x).cos(x)}

\begin{gathered} \\ \bf \implies \dfrac{d \{f(x) \}}{dx} = 2 \left \{^{1}c_{0} \dfrac{d \sin(x) }{dx}( \cos x) + \:^{1}c_{1}( \sin x) \dfrac{d \cos(x) }{dx} \right \} \\ \end{gathered} ⟹ dxd{f(x)}​	 =2{ 1 c 0​	  dxdsin(x)​	 (cosx)+ 1 c 1​	 (sinx) dxdcos(x)​	 }\begin{gathered} \\ \bf \implies f'(x)= 2 \left \{ \dfrac{d \sin(x) }{dx}( \cos x) + \:( \sin x) \dfrac{d \cos(x) }{dx} \right \} \\ \end{gathered}

\begin{gathered} \\ \bf \implies f'(x)= 2 \left \{ \cos(x). \cos (x) + \sin(x) \{ - \sin(x) \} \right\} \\ \end{gathered} ⟹f ′ (x)=2{cos(x).cos(x)+sin(x){−sin(x)}}

\begin{gathered} \\ \bf \implies f'(x)= 2 \left \{ \cos^{2} (x) - \sin^{2} (x)\right\} \\ \end{gathered} ⟹f ′ (x)=2{cos 2 (x)−sin 2 (x)}

\begin{gathered} \\ \bf \implies f'(x)= 2 \left \{ \cos(2x) \right\} \: \: \: \: \: \: \: \left[\: \because \: \cos^{2} (x) - \sin^{2} (x) = \cos(2x) \right] \\ \end{gathered}

\begin{gathered} \\ \bf \large \implies{ \boxed{ \bf f'(x)= 2 \cos(2x)}} \\ \end{gathered} ⟹ f ′ (x)=2cos(2x)

Thanks!

Similar questions