Math, asked by Anonymous, 1 month ago


\huge \bold \red{\sf\displaystyle \lim_{x \to 0} \bigg(\dfrac{x^{2} + 3x }{x^{3} + 2x} \bigg)}


❖ᴏɴʟʏ ᴘʀᴏᴘᴇʀ ꜱᴏʟᴠᴇᴅ ᴀɴꜱᴡᴇʀ ᴡɪᴛʜ ɢᴏᴏᴅ ᴇxᴘʟᴀɴᴀɪᴏɴ ɴᴇᴇᴅᴇᴅ
❖ ɴᴏ ꜱᴘᴀᴍᴍɪɴɢ
❖ᴏɴʟʏ ꜰᴏʀ ᴍᴏᴅᴇʀᴀᴛᴏʀꜱ, ʙʀᴀɪɴʟʏ ꜱᴛᴀʀꜱ ᴀɴᴅ ᴏᴛʜᴇʀ ʙᴇꜱᴛ ᴜꜱᴇʀꜱ​​​​​​​​​​​​​​​​

Answers

Answered by anindyaadhikari13
14

\textsf{\large{\underline{Solution}:}}

We have to evaluate the given limit:

 = \displaystyle \sf \lim_{x \to 0} \bigg( \dfrac{ {x}^{2}  + 3x}{ {x}^{3} + 2x }  \bigg)

 = \displaystyle \sf \lim_{x \to 0} \bigg( \dfrac{x(x + 3)}{x( {x}^{2}  + 2)}  \bigg)

 = \displaystyle \sf \lim_{x \to 0} \bigg( \dfrac{x + 3}{{x}^{2}  + 2}  \bigg)

Put x = 0, we get:

 = \sf \dfrac{0+ 3}{{0}^{2}  + 2}

 = \sf \dfrac{3}{2}

Therefore:

: \longmapsto  \displaystyle \sf \lim_{x \to 0} \bigg( \dfrac{ {x}^{2}  + 3x}{ {x}^{3} + 2x }  \bigg)  =  \dfrac{3}{2}

\textsf{\large{\underline{Answer}:}}

  • Result after evaluating the given limit = 3/2.

\textsf{\large{\underline{Additional Information}:}}

\displaystyle\sf 1.\lim_{x\to 0} sin(x)= 0

\displaystyle \sf 2.\lim_{x\to 0} cos(x) =1

\displaystyle \sf 3.\lim_{x\to 0} \dfrac{sin(x)}{x}= 1

\displaystyle \sf 4.\lim_{x\to 0} \dfrac{tan(x)}{x}= 1

\displaystyle \sf 5.\lim_{x\to 0} \dfrac{log(1+x)}{x}= 1

\displaystyle \sf 6. \lim_{x\to 0}e^{x}= 1

\displaystyle \sf 7.\lim_{x\to 0} \dfrac{e^{x}-1}{x}= 1

\displaystyle \sf 8.\lim_{x\to 0} \dfrac{a^{x}-1}{x}= ln(a)

\displaystyle \sf 9.\lim_{x\to \infty}\bigg(1+\dfrac{1}{x}\bigg)^{x}=e


anindyaadhikari13: Thanks for the brainliest :)
Answered by Sahan677
6

\lim_{x \to 0} \frac{x^{2} + 3 x}{x^{3} + 2 x}

Factor:

\color{red}{\lim_{x \to 0} \frac{x^{2} + 3 x}{x^{3} + 2 x}} = \color{red}{\lim_{x \to 0} \frac{x \left(x + 3\right)}{x \left(x^{2} + 2\right)}}

Cancel the common term:

\color{red}{\lim_{x \to 0} \frac{x \left(x + 3\right)}{x \left(x^{2} + 2\right)}} = \color{red}{\lim_{x \to 0} \frac{x + 3}{x^{2} + 2}}

Substitute the variable with the value:

\color{red}{\lim_{x \to 0} \frac{x + 3}{x^{2} + 2}} = \color{red}{\left(\frac{3}{2}\right)}

Therefore,

\lim_{x \to 0} \frac{x^{2} + 3 x}{x^{3} + 2 x} = \frac{3}{2}

Answer

\lim_{x \to 0} \frac{x^{2} + 3 x}{x^{3} + 2 x}=\frac{3}{2}

Similar questions