Math, asked by ItzYashTxg, 2 months ago


\huge\bold{ᴘʀᴏᴠᴇ  \: ᴛʜᴀᴛ }
9 \times \frac{2}{7}  +  \frac{2}{9} =   \frac{176}{63}

Answers

Answered by Anonymous
7

Given:

  • Equation: \tt 9 \times \frac{2}{7} + \frac{2}{9} = \frac{176}{63}

Exigency:

  • To prove that the following condition is true.

Solution:

Here,

  • We have 3 fractions with different operators between them. Now, using bodmas rule let's evaluate the right hand side and check weather it equals the left hand side.

As we know that,

  • BODMAS stands for

↝ Bracket

↝Of

↝Division

↝Multiplication

↝Addition

↝Subtraction

Now, let's start evaluating

 \longrightarrow \tt \:  \frac{9}{1}  \times  \frac{2}{7}  +  \frac{2}{9}  \\  \\  \\ \longrightarrow \tt \frac{18}{7}  +  \frac{2}{9}  \:  \:  \:  \:  \:  \:  \:  \:  \:

  • Now, let's find the l.c.m of 7 and 9

  \tt \: 7  =  { \boxed{ \pink{ \tt{ 7}}}} \times  { \boxed{ \pink{ \tt{ 1}}}} \\  \\ 9 =  { \boxed{ \pink{ \tt{ 9}}}} \times  { \boxed{ \pink{ \tt{ 1}}}}

  • LCM = 9 × 7 = 63

 \longrightarrow \tt\frac{18 \times 9}{7 \times 9}  +  \frac{2 \times 7}{9 \times 7}  \\  \\  \\ \longrightarrow \tt \frac{162}{63}  +  \frac{14}{63}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \\ \longrightarrow \tt \frac{176}{63}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

  • L.H.S = R.H.S hence proved.!!

Similar questions