Math, asked by Anonymous, 2 months ago


\huge\bold{\textbf{\textsf{{\color{cyan}{Question}}}}}
Mr Vig has a Recurring Deposit Account in a bank for 5 years at 9% p.a. simple interest. If he gets 53082 at the time of maturity, find the monthly ínstalment.​

Attachments:

Answers

Answered by Anonymous
132

 \large \rm {\underbrace{\underline{Elucidation:-}}}

━═━═━═━═━═━═━═━═━═━

 \sf \red {\underline{\underline{Provided\: that:}}}

 \tt {No\: of\: months(n)=5 ×12=60months}

Rate of iηterest(r)=9%

 \tt {Maturity\: value(M.V)=53082}

━═━═━═━═━═━═━═━═━═━

 \sf \blue {\underline{\underline{To\: determine:}}}

 \tt {Monthly\: iηstalment(P)=?}

━═━═━═━═━═━═━═━═━═━

 \sf \pink {\underline{\underline{We\: Know:}}}

 \tt {\fbox{\underline{Maturity\: value=Total\: sum\: deposited+iηterest\: on\: it}}}

━═━═━═━═━═━═━═━═━═━

 \to \tt{Total\: sum\: deposited=Monthly\: iηstalment×No\: of\: months}

 \implies \tt {\fbox{Total\: sum\: deposited=p×n}}

 \implies \tt {Total\: sum\: deposited=p×60}

\colon \implies \tt \green{Total\: sum\: deposited=60p}

━═━═━═━═━═━═━═━═━═━

 \to \tt {Simple\: iηterest (I)=p×\frac{n(n+1)}{2×12}×\frac{r}{100}}

➻Substituting the given values,

 \to \tt {I=p×\frac{60(60+1)}{2×12}×\frac{9}{100}}

 \to \tt {I=p×\frac{\cancel{60}^{5}(61)}{2×{\cancel{12}}}×\frac{9}{100}}

 \to \tt {I=p×\frac{5×61}{2}×\frac{9}{100}}

 \to \tt {I=p×\frac{305}{2}×\frac{9}{100}}

 \to \tt {I=p×\frac{305×9}{2×100}}

 \to \tt {I=p×\frac{2745}{200}}

 \to \tt \green {\fbox{\underline{Simple\:Iηterest=13.725p}}}

━═━═━═━═━═━═━═━═━═━

➻Now,

 \tt {Maturity\: value=Total\: sum\: deposited+iηterest\: on\: it}

\to \tt {53082=60p+13.725p}

\to \tt {53082=73.725p}

\to \tt {p=\frac{53082}{73.725}}

\implies \tt \green {\fbox{\underline{p=720}}}

━═━═━═━═━═━═━═━═━═━

 \sf \purple {\underline{\underline{Therefore,}}}

➻Monthly iηstallment by Mr.vig is 720

━═━═━═━═━═━═━═━═━═━

 \sf \orange {\underline{\underline{NOTE:-}}}

➻Kindly scroll left,to view the entered text completely.

━═━═━═━═━═━═━═━═━═━

Similar questions