Math, asked by Anonymous, 4 months ago


{\huge{\boxed{\bf{\mathtt {question}}}}}
Find the value of "x"

Plz help me with this....
SPAMMERS STAY AWAY


NO SPAM...
PLZ.....​

Attachments:

Answers

Answered by AestheticSoul
4

Question

: \implies \sf{\bigg(\dfrac{1}{5}\bigg)^{-3} \times \bigg(\dfrac{1}{5}\bigg)^{-5} = \bigg(\dfrac{1}{5}\bigg)^{x}}

Solution

 \implies\sf{\bigg(\dfrac{1}{5}\bigg)^{-3} \times \bigg(\dfrac{1}{5}\bigg)^{-5} = \bigg(\dfrac{1}{5}\bigg)^{x}}

 \implies\sf{\bigg(\dfrac{1}{5}\bigg)^{-3 +( - 5)} = \bigg(\dfrac{1}{5}\bigg)^{x}}

 \implies\sf{\bigg(\dfrac{1}{5}\bigg)^{-3- 5} = \bigg(\dfrac{1}{5}\bigg)^{x}}

 \implies\sf{\bigg(\dfrac{1}{5}\bigg)^{-8} = \bigg(\dfrac{1}{5}\bigg)^{x}}

\red{\bigstar} Bases are equal, powers are equal.

 \implies\sf{ - 8 = x}

\red{\bigstar} \large{\boxed{\sf{\blue{x = - 8}}}}

━━━━━━━━━━━

Know MorE -

\red{\bigstar} Laws of Indices -

\red{\bigstar} 1st Law (Product Law)

  • For example -
  • :  \implies\sf{ {a}^{2} \times  {a}^{3} =  {a}^{2 + 3}   }
  • :  \implies\sf{ {a}^{5}   }

\red{\bigstar} 2nd Law  (Quotient law)

For example -

: \implies\sf{ \dfrac{a^{2} }{a^{3}} }

: \implies\sf{a^{2 - 3} }

: \implies\sf{a^{ - 1} }

\red{\bigstar} 3rd Law (Quotient law)

For example -

: \implies\sf{(a^2)^3}

: \implies\sf{(a^{2 \times 3})}

: \implies\sf{(a^{6})}

Answered by Anonymous
42

✌☑☑✏REFER THE ATTACHMENT...

Attachments:
Similar questions