❖ᴏɴʟʏ ᴘʀᴏᴘᴇʀ ꜱᴏʟᴠᴇᴅ ᴀɴꜱᴡᴇʀ ᴡɪᴛʜ ɢᴏᴏᴅ ᴇxᴘʟᴀɴᴀɪᴏɴ ɴᴇᴇᴅᴇᴅ
❖ ɴᴏ ꜱᴘᴀᴍᴍɪɴɢ
❖ᴏɴʟʏ ꜰᴏʀ ᴍᴏᴅᴇʀᴀᴛᴏʀꜱ, ʙʀᴀɪɴʟʏ ꜱᴛᴀʀꜱ ᴀɴᴅ ᴏᴛʜᴇʀ ʙᴇꜱᴛ ᴜꜱᴇʀꜱ
Answers
Answered by
2
Step-by-step explanation:
given :
to find :
- sec(x) \: dx}}}}}[/tex]
solution :
- Note: Here, we are" considering " log x as log_ex`.
- Let I = {sec x "cosec "x}/{log ( tan x)} dx
- "Putting" "log" \ tan x = t`
- \[\Rightarrow \frac{\sec^2 x}{\tan x} =
- \frac{dt}{dx}\]
- \[\Rightarrow \text{sec x cosec x dx} =
- dt\]
- \[\therefore I = \int\frac{1}{t}dt\]
- \[= \text{log }\left| \text{t}\right| + C\] \[= \text{log} \left| \text{log} \left( \tan
- x \right) \right| + C\]
Answered by
20
Let v=u + 1.
Let v=u - 1
Therefore,
Answer:
Similar questions