Math, asked by Anonymous, 1 day ago


 \huge{ \boxed{ \bold \red{ \int \tan(x) dx}}}


❖ᴏɴʟʏ ᴘʀᴏᴘᴇʀ ꜱᴏʟᴠᴇᴅ ᴀɴꜱᴡᴇʀ ᴡɪᴛʜ ɢᴏᴏᴅ ᴇxᴘʟᴀɴᴀɪᴏɴ ɴᴇᴇᴅᴇᴅ
❖ ɴᴏ ꜱᴘᴀᴍᴍɪɴɢ
❖ᴏɴʟʏ ꜰᴏʀ ᴍᴏᴅᴇʀᴀᴛᴏʀꜱ, ʙʀᴀɪɴʟʏ ꜱᴛᴀʀꜱ ᴀɴᴅ ᴏᴛʜᴇʀ ʙᴇꜱᴛ ᴜꜱᴇʀꜱ​

Answers

Answered by senboni123456
4

Answer:

Step-by-step explanation:

We have,

\tt{\displaystyle\int\,tan(x)\,dx}

\sf{=\displaystyle\int\,\dfrac{sin(x)}{cos(x)}\,dx}

\sf{Let\,\,\,cos(x)=t}

\sf{\implies\,-sin(x)\,dx=dt}

\sf{=-\displaystyle\int\,\dfrac{1}{t}\,dt}

\sf{=-\ln|t|+C}

\sf{=-\ln|cos(x)|+C}

\sf{=\ln|cos(x)|^{-1}+C}

\sf{=\ln\left|\dfrac{1}{cos(x)}\right|+C}

\sf{=\ln\left|sec(x)\right|+C}

Answered by Sahan677
15

 \bold \red{\int{\tan{\left(x \right)} d x}}

 \bold \red{Rewrite \:  the \:  tangent  \: as }

 \bold \red{\tan\left(x\right)=\frac{\sin\left(x\right)}{\cos\left(x\right)}:}

 \bold{\color{red}{\int{\tan{\left(x \right)} d x}} = \color{red}{\int{\frac{\sin{\left(x \right)}}{\cos{\left(x \right)}} d x}}}

 \bold \red{Let \:  u=\cos{\left(x \right)}.}

{ \bold \red{Then  \: du=\left(\cos{\left(x \right)}\right)^{\prime }dx = - \sin{\left(x \right)} dx \:  and \:  we \:  have \:  that \sin{\left(x \right)} dx = - du.}}

 \bold \red{Thus,}

 \bold \red{\color{red}{\int{\frac{\sin{\left(x \right)}}{\cos{\left(x \right)}} d x}} = \color{red}{\int{\left(- \frac{1}{u}\right)d u}}}

 \bold \red{Apply \:  the  \: constant  \: multiple  \: rule}

  \bold \red{{\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du \:  with  \: c=-1 \:  and \:  f{\left(u \right)} = \frac{1}{u}:}}

 \bold{\color{red}{\int{\left(- \frac{1}{u}\right)d u}} = \color{red}{\left(- \int{\frac{1}{u} d u}\right)} \: The \:  integral \:  of \:  \frac{1}{u} \:  is  \: \int{\frac{1}{u} d u} = \ln{\left(u \right)}}

 \bold \red{- \color{red}{\int{\frac{1}{u} d u}} = - \color{red}{\ln{\left(u \right)}}}

 \bold \red{Recall \:  that  \: u=\cos{\left(x \right)}:}

 \bold \red{- \ln{\left(\color{red}{u} \right)} = - \ln{\left(\color{red}{\cos{\left(x \right)}} \right)}}

 \bold \red{Therefore,}

 \bold \red{\int{\tan{\left(x \right)} d x} = - \ln{\left(\left|{\cos{\left(x \right)}}\right| \right)}}

 \bold \red{Add \:  the  \: constant  \: of \:  integration:}

 {\bold \red{\int{\tan{\left(x \right)} d x} = - \ln{\left(\left|{\cos{\left(x \right)}}\right| \right)}+C}}

Similar questions