Physics, asked by thapaavinitika6765, 7 months ago

\huge\boxed{\dfrac{\partial }{\partial \:x}\left(\sqrt{x^2+y^2}\right)}

Question for real life genius

Answers

Answered by khushidewangan012
0

Explanation:

pls mark me as brainlist

Attachments:
Answered by Anonymous
144

♣ Qᴜᴇꜱᴛɪᴏɴ :

\bf{\dfrac{\partial }{\partial \:x}\left(\sqrt{x^2+y^2}\right)}

♣ ᴀɴꜱᴡᴇʀ :

\bf{Treat\:y\: as \:a \:constant}

\bf{Apply\: the\: chain\: rule: \dfrac{1}{2 \sqrt{x^{2}+y^{2}}} \dfrac{\partial}{\partial x}\left(x^{2}+y^{2}\right)}}

\bf{=\dfrac{1}{2 \sqrt{x^{2}+y^{2}}} \dfrac{\partial}{\partial x}\left(x^{2}+y^{2}\right)}

\bf{\dfrac{\partial}{\partial x}\left(x^{2}+y^{2}\right)=2 x}

\bf{=\dfrac{1}{2 \sqrt{x^{2}+y^{2}}} \cdot 2 x}

\bf{Simplify\:\frac{1}{2 \sqrt{x^{2}+y^{2}}} \cdot 2 x: \dfrac{x}{\sqrt{x^{2}+y^{2}}}}

\boxed{=\dfrac{\mathbf{X}}{\sqrt{\mathbf{x}^{2}+\mathbf{y}^{2}}}}

Similar questions