Physics, asked by thapaavinitika6765, 4 months ago

\huge\boxed{\dfrac{\partial }{\partial \:x}\left(\sqrt{x^2+y^2}\right)}

solve it

Answers

Answered by Anonymous
153

♣ Qᴜᴇꜱᴛɪᴏɴ :

\bf{\dfrac{\partial }{\partial \:x}\left(\sqrt{x^2+y^2}\right)}

♣ ᴀɴꜱᴡᴇʀ :

\bf{Treat\:y\:as\:a\:constant}

\sf{Apply\:the\:chain\:rule}:\quad \dfrac{1}{2\sqrt{x^2+y^2}}\dfrac{\partial \:}{\partial \:x}\left(x^2+y^2\right)}

\sf{=\dfrac{1}{2\sqrt{x^2+y^2}}\dfrac{\partial \:}{\partial \:x}\left(x^2+y^2\right)}

\sf{\dfrac{\partial \:}{\partial \:x}\left(x^2+y^2\right)=2x}

\sf{=\dfrac{1}{2\sqrt{x^2+y^2}}\cdot \:2x}

\mathrm{Simplify\:}\dfrac{1}{2\sqrt{x^2+y^2}}\cdot \:2x:\quad \dfrac{x}{\sqrt{x^2+y^2}}

\huge\boxed{\bf{=\dfrac{x}{\sqrt{x^2+y^2}}}}

Answered by Anonymous
137

\mathrm{Apply\:the\:chain\:rule}:\quad \frac{1}{2\sqrt{x^2+y^2}}\frac{\partial \:}{\partial \:x}\left(x^2+y^2\right)

\frac{\partial \:}{\partial \:x}\left(x^2+y^2\right)=2x

\mathrm{Simplify\:}\frac{1}{2\sqrt{x^2+y^2}}\cdot \:2x:\quad \frac{x}{\sqrt{x^2+y^2}}

=\frac{x}{\sqrt{x^2+y^2}}

Similar questions