Math, asked by diyakhrz12109, 1 month ago

\huge\boxed{\fcolorbox{black}{black}{question}}


For which values of a and b does the following pair of linear equations have an infinite number of solutions?

2x + 3y = 7

(a – b) x + (a + b) y = 3a + b – 2

ᴛʜᴀɴᴋ ᴍʏ ᴀɴsᴡᴇʀ❥︎​

Answers

Answered by Anonymous
102

\huge\red{A}\pink{N}\orange{S}\green{W}\blue{E}\gray{R:-}

For 2x + 3y = 7, we have a1 = 2, b1 = 3, c1 = - 7 and

for (a - b) x + (a + b) y = 3a + b - 2,

we have a2 = a - b, b2 = a + b, c2 = - (3a + b - 2) .

For \: infinite \: number \: of \: solutions \\  \frac{a1}{a2}  =  \frac{ b 1 }{b2}  =  \frac{c1}{c2}

\longmapsto\tt \frac{2}{a - b}  =  \frac{3}{a + b}  =  \frac{ - 7}{ - (3a + b - 2)}

\small\red{consider \:  \frac{2}{a - b}  =  \frac{3}{a + b} }

\small\pink{=>2a + 2b = 3a - 3b}

\small\orange{ =  > a = 5b           \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:        ➡  (1) }

\small\green{and \:  \frac{2}{a - b}  =  \frac{7}{3a + b - 2}  }

\small\blue{=&gt; 6a + 2b - 4 = 7a - 7b}</p><p>

\small\blue{ =  &gt; - a + 9b = 4}

\small\blue{ =  &gt; - \: 5b + 9b = 4}

\small\blue{=&gt; 4b = 4       \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:       [from (1) ]}

\small\gray{From (1), a = 5 × 1 = 5}

For a = 5, b = 1, the pair of equations has infinitely many solutions.

Similar questions