Math, asked by morankhiraj, 2 months ago


{\huge{\boxed{ \mathcal{\orange{Hello!}}}}}
\large\mathcal\red{Please\:solve\:this..✍}
PROVE;
\small\mathfrak\orange{sin⁸ø\:-\:cos⁸ø\:=\:(sin²ø\:-\:cos²ø)}

Answers

Answered by mathdude500
5

Correct Statement is

To prove :-

\sf \:  sin⁸ø\:-\:cos⁸ø\:=(\:sin²ø\:-\:cos²ø)(1 - 2 {sin}^{2} ø {cos}^{2} ø)

─━─━─━─━─━─━─━─━─━─━─━─━─

\begin{gathered}\Large{\bold{{\underline{Formula \:  Used \::}}}}  \end{gathered}

\bf \:  ⟼  {x}^{2}  -  {y}^{2}  = (x + y)(x - y)

\bf \:  ⟼  {x}^{2}  +  {y}^{2}  =  {(x + y)}^{2}  - 2xy

\bf \:  ⟼  {sin}^{2} ø +  {cos}^{2} ø = 1

─━─━─━─━─━─━─━─━─━─━─━─━─

Proof :-

Proof :- Consider LHS :-

\bf \:  sin⁸ø\:-\:cos⁸ø\:

\bf \:    = { ({sin}^{4}ø) }^{2}  -  { ({cos}^{4}ø )}^{2}

\sf \:   = ( {sin}^{4} ø +  {cos}^{4} ø)( {sin}^{4} ø -  {cos}^{4} ø)

\sf \:   = \bigg( { ({sin}^{2}ø) }^{2}   +   { ({cos}^{2}ø )}^{2} \bigg )\bigg( { ({sin}^{2}ø) }^{2}    -    { ({cos}^{2}ø )}^{2} \bigg )

\sf \:   =  \bigg(\bigg( { {sin}^{2}ø }   +   { {cos}^{2}ø \bigg )}^{2}  - 2 {sin}^{2} ø {cos}^{2} ø \bigg)( {sin}^{2} ø +  {cos}^{2} ø)( {sin}^{2} ø -  {cos}^{2} ø)

\sf \:   = (1 - 2 {sin}^{2} ø {cos}^{2} ø)( {sin}^{2} ø -  {cos}^{2} ø)

\large{\boxed{\boxed{\bf{Hence, Proved}}}}

─━─━─━─━─━─━─━─━─━─━─━─━─

\large {\bf \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   ⟼ Explore \:  more } ✍

─━─━─━─━─━─━─━─━─━─━─━─━─

Additional Information:-

Additional Information:- Relationship between sides and T ratios

sin θ = Opposite Side/Hypotenuse

cos θ = Adjacent Side/Hypotenuse

tan θ = Opposite Side/Adjacent Side

sec θ = Hypotenuse/Adjacent Side

cosec θ = Hypotenuse/Opposite Side

cot θ = Adjacent Side/Opposite Side

Reciprocal Identities

cosec θ = 1/sin θ

sec θ = 1/cos θ

cot θ = 1/tan θ

sin θ = 1/cosec θ

cos θ = 1/sec θ

tan θ = 1/cot θ

Co-function Identities

sin (90°−x) = cos x

cos (90°−x) = sin x

tan (90°−x) = cot x

cot (90°−x) = tan x

sec (90°−x) = cosec x

cosec (90°−x) = sec x

Fundamental Trigonometric Identities

sin²θ + cos²θ = 1

sec²θ - tan²θ = 1

cosec²θ - cot²θ = 1

─━─━─━─━─━─━─━─━─━─━─━─━─

</p><p>\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\bf Trigonometry\: Table \\ \begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\boxed{\boxed{\begin{array}{ |c |c|c|c|c|c|} \bf\angle A &amp; \bf{0}^{ \circ} &amp; \bf{30}^{ \circ} &amp; \bf{45}^{ \circ} &amp; \bf{60}^{ \circ} &amp; \bf{90}^{ \circ} \\ \\ \rm sin A &amp; 0 &amp; \dfrac{1}{2}&amp; \dfrac{1}{ \sqrt{2} } &amp; \dfrac{ \sqrt{3}}{2} &amp;1 \\ \\ \rm cos \: A &amp; 1 &amp; \dfrac{ \sqrt{3} }{2}&amp; \dfrac{1}{ \sqrt{2} } &amp; \dfrac{1}{2} &amp;0 \\ \\ \rm tan A &amp; 0 &amp; \dfrac{1}{ \sqrt{3} }&amp;1 &amp; \sqrt{3} &amp; \rm \infty \\ \\ \rm cosec A &amp; \rm \infty &amp; 2&amp; \sqrt{2} &amp; \dfrac{2}{ \sqrt{3} } &amp;1 \\ \\ \rm sec A &amp; 1 &amp; \dfrac{2}{ \sqrt{3} }&amp; \sqrt{2} &amp; 2 &amp; \rm \infty \\ \\ \rm cot A &amp; \rm \infty &amp; \sqrt{3} &amp; 1 &amp; \dfrac{1}{ \sqrt{3} } &amp; 0\end{array}}}\end{gathered}\end{gathered}\end{gathered} \end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered}

Similar questions