Math, asked by vijay876751ac2, 3 days ago


{\huge{\boxed{\mathcal{\red{Question:-}}}}}
Only \:  Moderators \\  and \:  best  \: Users  \: Should \:  Answer!

1, tan 45° + 2 tan² 60° =

2, sin² 30° = 1 =

3, tan² 60° + 4 cos ² 45° + 3 sec² 30° + 5 cos² 90° = 

4, If tan \large\theta =  \frac{3}{4}, then \Large\  \frac{1 - cos\theta}{1 + cos\theta} =

Plz don't Spam and don't Copy from web or Homework apps...!​

Answers

Answered by ProximaNova
8

Step-by-step explanation:

\LARGE\color{black}{\colorbox{#FF7968}{1.}} tan45⁰ + 2tan²60⁰ = ?

Using the standard values of trigonometric functions,

\sf tan45⁰ = 1 ,\ tan60⁰ = \sqrt3

Thus,

\sf \bf :\longmapsto tan45⁰ + 2tan^260⁰ = 1 + (\sqrt3)^2

 :\longmapsto\boxed{:\longmapsto\sf\bf tan45⁰ + 2tan^260⁰=4}

\LARGE\color{black}{\colorbox{#4FB3F6}{2.}} sin²30⁰+ 1 = ?

Using the standard values,

\sf sin30⁰ = 1/2

\sf \bf :\longmapsto sin^230⁰ + 1 = \left(\dfrac{1}{2} \right)^2+ 1

:\longmapsto\boxed{\sf \bf sin^230⁰+1\dfrac{5}{4}}

\LARGE\color{black}{\colorbox{#FEDD8E}{3.}} tan²60⁰ + 4cos²45⁰ + 3sec²30⁰ + 5cos²90⁰ = ?

Using the standard values,

\sf tan60⁰ = \sqrt3 , cos45⁰ = \dfrac{1}{2} , sec30⁰ = \dfrac{2}{\sqrt3}, cos90⁰ = 0

\sf \bf :\longmapsto tan^260⁰ + 4cos^245⁰ + 3sec^230⁰ + 5cos^290⁰ = (\sqrt3)^2+ 4\left(\dfrac{1}{2}\right)^2 + 3\left(\dfrac{2}{\sqrt3}\right)^2 +5(0)

\sf \bf :\longmapsto tan^260⁰ + 4cos^245⁰ + 3sec^230⁰ + 5cos^290⁰ = 3 + 2 + 4 + 0

 :\longmapsto \boxed{\sf\bf tan^260⁰ + 4cos^245⁰ + 3sec^230⁰ + 5cos^290⁰ = 9}

\LARGE\color{black}{\colorbox{#FBBE2E}{4.}} \theta = \frac{3}{4}, then \Large\ \frac{1 - cos\theta}{1 + cos\theta} = ?

Consider the diagram for this part

As the ratio of AB and AC is 4/3 considering \theta\angleC,

Let AB and BC be 3k and 4k

Thus, AC² = AB² + BC² [Pythagoras theorem]

\sf \bf :\longmapsto AC^2 = (3k)^2 + (4k)^2

\sf \bf :\longmapsto AC^2= 9k^2 + 16k^2

\sf \bf :\longmapsto AC^2 = 25k^2

\sf \bf :\longmapsto AC = 5k

Now , clearly,

\sf \bf :\longmapsto cos \theta = \displaystyle \frac{BC}{AC} = \frac{4k}{5k} = \frac{4}{5}

Putting this value in the expression,

\sf \bf :\longmapsto \dfrac{1 - cos\theta}{1 + cos\theta} = \dfrac{1-\dfrac{4}{5}}{1+\dfrac{4}{5}}

\sf \bf :\longmapsto \dfrac{1 - cos\theta}{1 + cos\theta} = \dfrac{1}{5} \times \dfrac{5}{9}

 :\longmapsto \boxed{\sf \bf \dfrac{1 - cos\theta}{1 + cos\theta} = \dfrac{1}{9}}

Attachments:
Answered by SukhmaniDhiman
1

Answer:

Hello how are u????? Remember me

Similar questions