Math, asked by Anonymous, 10 months ago

{\huge {\boxed {\red {\mathcal {Yo}}}}}

Factorie this : --
a)9 {x}^{2}  - 4 {y}^{2}
<marquee>Thanks❤<marquee>

Answers

Answered by Rose08
103

\bf\huge\underline{Solution :-}

9x² - 4y²

= (3x)² - (2y)²

= (3x + 2y)(3x - 2y)

Here, Identity used :-

  • a² - b² = (a + b)(a - b)

More identities :-

  • (a + b)² = a² + b² + 2ab
  • (a - b)² = a² + b² - 2ab
Answered by EliteSoul
220

Answer:

{\boxed{\bold\green{Answer :(3x + 2y)(3x - 2y) }}}

Step-by-step explanation:

Question:-

Factorize this:-

  • a) \sf\green{9{x}^{2} - 4{y}^{2}}

\bold{Solution:-}

\rm a) 9{x}^{2} - 4{y}^{2} \\\\\\\hookrightarrow\rm {(3x)}^{2} - {(2y)}^{2} \\\\\\\rm \: \: \: [\because ({a}^{2} - {b}^{2}) = (a + b) (a - b) ] \\\\\\\hookrightarrow{\boxed{\rm{ (3x + 2y)(3x - 2y) }}}

\boxed{\begin{minipage}{7 cm} More identities ralated to it :- \\\\{${(a + b)}^{2} ={a}^{2} + {b}^{2} + 2ab $ }\\\\ {${(a - b)}^{2} ={a}^{2} + {b}^{2} - 2ab$}\\\\{${(a+b)}^{2} = {(a - b)}^{2} + 4ab$ }\\\\{${(a - b)}^{2}= {(a + b)}^{2} - 4ab$}\\\\{${(a + b + c)}^{2} = {a}^{2} + {b}^{2} + {c}^{2} + 2(ab + bc + ca)$}\\\\{$(x + a)(x + b) ={x}^{2} + (a + b)x + ab$}\end{minipage}}

Similar questions