Math, asked by OnlyToughQuestions, 3 months ago


\huge\boxed{\tt\purple{✠Question}}
a fraction becomes 1/3 if 1 is subtracted from both its numerator and dinominator if 1 is added to both numerator and dinominator, it becomes 1/2 find the fraction​.

\pink{\large \qquad \boxed{\boxed{\begin{array}{cc} \maltese \tt Don't \:  Spam \\ \\ \maltese \tt LaTex \:  Answer  \: is \:  Required \\ \\ \maltese \: \: \tt All  \: The \:  Best\end{array}}}}

Answers

Answered by SparklingBoy
137

 \large \dag Question :-

A Fraction becomes 1/3, If 1 is subtracted from both numerator and denominator, If 1 is added to both numerator and denominator, it becomes 1/2 find the fraction.

 \large \dag Answer :-

\red\dashrightarrow\underline{\pink{\underline{\frak{\pmb{\text The \: Original \: Fraction \: is \:   \dfrac{3}{7}}}}}}

 \large \dag Step by step Explanation :-

Let Numerator and Denominator of Original Fraction be :

  • Numerator =  \large \rm x

  • Denominator =  \large \rm y

So,

\text{Original Fraction = }\rm \frac{x}{y}  \\

When 1 is subtracted from both numerator and denominator :-

\text{Fraction Becomes : } \rm \frac{\text x - 1}{\text y - 1}  \\

 \large \maltese\: According To Question :

 \large \blue \bigstar \:  \: \red{ \bf   \frac{x - 1}{y - 1}  =  \frac{1}{3} } \\

On Cross Multiplying :

:\longmapsto \rm 3(x - 1) = y - 1 \\

:\longmapsto \rm 3x - 3 = y - 1 \\

:\longmapsto \rm 3x - y =  - 1 + 3 \\

\large:\longmapsto  \underline \green{{ \underline{\rm 3x - y = 2}}} \:  \:   -  -  - (1)

When 1 is added to both numerator and dinominator :-

\text{Fraction Becomes : } \rm \frac{\text x + 1}{\text y + 1}  \\

 \large \maltese\: According To Question :

 \large \blue \bigstar \:  \: \red{ \bf   \frac{x + 1}{y + 1}  =  \frac{1}{2} } \\

On Cross Multiplying :

:\longmapsto \rm 2(x + 1) = y + 1 \\

:\longmapsto \rm 2x + 2 = y + 1 \\

:\longmapsto \rm 2x - y =  1 - 2 \\

\large:\longmapsto  \underline \green{{ \underline{\rm 2x - y = -1}}} \:  \:   -  -  - (2)

Subtracting (2) from (1) :

:\longmapsto \rm 3x - y - (2x - y) = 2 - ( - 1) \\

:\longmapsto \rm 3x - \cancel y - 2x + \cancel y = 2 + 1 \\

\purple{ \large :\longmapsto  \underline {\boxed{{\bf x = 3} }}}

Putting Value of x in (1) :

:\longmapsto \rm 3 \times 3 - y = 2 \\

:\longmapsto \rm 9 - y = 2 \\

:\longmapsto \rm y = 9 - 2 \\

\purple{ \large :\longmapsto  \underline {\boxed{{\bf y = 7} }}}

Numerator of Fraction = 3

And Denominator of Fraction = 7

Therefore,

\underline{\orange{\underline{\frak{\pmb{\text The \: Original \: Fraction \: is \:   \dfrac{3}{7}}}}}}

Answered by MяMαgıcıαη
105

Answer:

‣ Required fraction \mapsto\:{\boxed{\tt{\dfrac{3}{7}}}}

Explanation:

Given information,

A fraction becomes 1/3 if 1 is subtracted from both its numerator and denominator, if 1 is added to both numerator and denominator, it becomes 1/2. Find the fraction.

Let,

  • \tt Fraction = \dfrac{Numerator}{Denominator} = \dfrac{a}{b}

Case

⚘ If 1 is subtracted from both its numerator and denominator, fraction becomes 1/3.

Therefore,

\\ \longrightarrow\:\tt \dfrac{a - 1}{b - 1} = \dfrac{1}{3}

By doing cross multiplication we get,

\\ \longrightarrow\:\tt 3(a - 1) = 1(b - 1)

\\ \longrightarrow\:\tt 3a - 3 = b - 1

\\ \longrightarrow\:\tt 3a - 3 + 1 = b

\\ \longrightarrow\:\tt \Big| b = 3a - 2 \Big|\qquad- Eq^{n}\:(1)

Case

⚘ If 1 is added to both numerator and denominator, fraction becomes 1/2.

Therefore,

\\ \longrightarrow\:\tt \dfrac{a + 1}{b + 1} = \dfrac{1}{2}

By doing cross multiplication we get,

\\ \longrightarrow\:\tt 2(a + 1) = 1(b + 1)

\\ \longrightarrow\:\tt 2a + 2 = b + 1

\\ \longrightarrow\:\tt 2a + 2 - 1 = b

\\ \longrightarrow\:\tt \Big| b = 2a + 1 \Big|\qquad- Eq^{n}\:(2)

From Eqⁿ (1) and Eqⁿ (2) we get,

\\ \longrightarrow\:\tt 3a - 2 = 2a + 1

\\ \longrightarrow\:\tt 3a - 2a = 1 + 2

\\ \longrightarrow\:\tt 1a = 3

\\ \longrightarrow\:{\underline{\boxed{\tt{a = 3}}}}\:\bigstar

Putting value of 'a' in Eqⁿ (2),

\\ \longrightarrow\:\tt b = 2(3) + 1

\\ \longrightarrow\:\tt b = (2\:\times\:3) + 1

\\ \longrightarrow\:\tt b = 6 + 1

\\ \longrightarrow\:{\underline{\boxed{\tt{b = 7}}}}\:\bigstar

Hence,

\sf Fraction = \dfrac{Numerator}{Denominator} = \dfrac{a}{b} = {\boxed{\bf{\dfrac{3}{7}}}}

Verification:

We know that,

\\ \longrightarrow\:\tt \dfrac{a - 1}{b - 1} = \dfrac{1}{3}

Put a = 3 and b = 7 in above equation we get,

\\ \longrightarrow\:\tt \dfrac{3 - 1}{7 - 1} = \dfrac{1}{3}

\\ \longrightarrow\:\tt {\cancel{\dfrac{2}{6}}} = \dfrac{1}{3}

\\ \longrightarrow\:\tt \dfrac{1}{3} = \dfrac{1}{3}

\\ \longrightarrow\:{\underline{\boxed{\tt{LHS = RHS}}}}\:\bigstar

Also,

\\ \longrightarrow\:\tt \dfrac{a + 1}{b + 1} = \dfrac{1}{2}

Put a = 3 and b = 7 in above equation we get,

\\ \longrightarrow\:\tt \dfrac{3 + 1}{7 + 1} = \dfrac{1}{2}

\\ \longrightarrow\:\tt {\cancel{\dfrac{4}{8}}} = \dfrac{1}{2}

\\ \longrightarrow\:\tt \dfrac{1}{2} = \dfrac{1}{2}

\\ \longrightarrow\:{\underline{\boxed{\tt{LHS = RHS}}}}\:\bigstar

Hence, Verified

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Similar questions