Math, asked by Sahan677, 12 days ago


 \huge \circ +  \circ = 10 \\   \huge\circ \times  \square +  \square = 12 \\ \huge  \circ \times  \square -  \triangle \times  \circ =  \circ  \\  \huge \triangle = ?



DON'T SPAM OTHERWISE REPORT ​

Answers

Answered by gandharvabhoite2006
0

Answer:

1

Step-by-step explanation:

As on solving above eqns we get Circle as 5,Square as 2 and Triangle as 1

Answered by mathdude500
9

\large\underline{\sf{Solution-}}

Given that,

\rm :\longmapsto\: \circ + \circ = 10

\rm :\longmapsto\: 2\circ = 10

\rm :\longmapsto\: \circ = \dfrac{10}{2}

\bf\implies \:\boxed{\tt{  \circ  = 5 \: }}

Again, given that

\rm :\longmapsto\:\circ \times \square + \square = 12

\rm :\longmapsto\:5\times \square + \square = 12

\rm :\longmapsto\:6\times \square  = 12

\rm :\longmapsto\:\square  = \dfrac{12}{6}

\bf\implies \:\boxed{\tt{ \:\square  = 2 \: }}

Again, Given that

\rm :\longmapsto\:\circ \times \square - \triangle \times \circ = \circ

can be rewritten as

\rm :\longmapsto\:5 \times 2 - \triangle \times5 = 5

\rm :\longmapsto\:10 - \triangle \times5 = 5

\rm :\longmapsto\: - \triangle \times5 = 5 - 10

\rm :\longmapsto\: - \triangle \times5 = - 5

\rm :\longmapsto\:  \triangle =\dfrac{ - 5}{ - 5}

\sf\implies\: \boxed{\tt{  \triangle =1 }}

Similar questions